

Preparing for the Future: Upgrades of the LHC Experiments

European Summer Campus From the Mystery of Mass to Nobel Prizes – The Physics of the Higgs Boson Strasbourg, France, July 6–12, 2014

www.kit.edu

LHC _ the Large Hadr LHC Accelerator:

proton-proton and lead-lead collisions

ALICE Experiment: heavy ion physics

CMS Experiment: multi-purpose experiment

CERN accelerator complex, about 100 m under ground LHC circumference: ~27 km

LHCb Experiment: CP violation and B physics

Lake Geneva

ATLAS Experiment: multi-purpose experiment

rich Husemann nphysik (IEKP)

aring for the Future: Upgrades of the LHC Experiments

LHC Upgrades: Why, How, and When

Why:

- Physics: the best is yet to come (cf. Tevatron: B_S mixing and single top after ~20 years of operation)
- Detectors: replace aging components, update obsolete technologies

How:

- Upgrades of the LHC (including injection chain)
- Upgrades of detectors, triggers, data acquisition systems
- Goal: keep comparable performance in increasingly challenging environment

When:

Three upgrade periods: 2013/4 – 2018/9 – 2023/4

Outline

The Case for LHC Upgrades

ATLAS and CMS Upgrades

ALICE and LHCb Upgrades

Beyond LHC

The Case for LHC Upgrades

Status July 2014

Discovery of a Higgs boson

- LHC = factory of standard model (SM) particles (W, Z, top, Higgs, ...)
- No signs of beyond-SM physics yet (SUSY, new strong dynamics, extra dimensions, ...)

A Sta	ATLAS SUSY Searches* - 95% CL Lower Limits Status: SUSY 2013						∫L
	Model	e, μ, τ, γ	Jets	E ^{miss} T	∫£dt[fb	⁻¹] Mass limit	
Inclusive Searches	$ \begin{array}{c} \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{0}^{1} \\ \tilde{g}, \tilde{g} \rightarrow q \tilde{\chi}_{0}^{1} \\ \tilde{g}, \tilde{g} \rightarrow q \tilde{\chi}_{1}^{2} \\ \tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{1} \rightarrow q q W^{\pm} \tilde{\chi}_{1}^{0} \\ \tilde{g}, \tilde{g} \rightarrow q q (\ell \ell / \ell / \nu) \tilde{\chi}_{1}^{0} \\ \text{GMSB} (\tilde{\ell} \text{ NLSP}) \\ \text{GMSB} (\tilde{\ell} \text{ NLSP}) \\ \text{GGM (bino NLSP)} \\ \text{GGM (bino NLSP)} \\ \text{GGM (higgsino-bino NLSP)} \\ \text{GGM (higgsino NLSP)} \\ \text{GGM (higgsino NLSP)} \\ \text{GGM (higgsino NLSP)} \\ \text{GGM (higgsino LSP)} \\ \text{Gravitino LSP} \\ \end{array} $	$\begin{array}{c} 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 0 \\ 1 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 1.2 \ \tau \\ 2 \ \gamma \\ 1 \ e, \mu + \gamma \\ \gamma \\ 2 \ e, \mu \left(Z \right) \\ 0 \end{array}$	2-6 jets 3-6 jets 7-10 jets 2-6 jets 2-6 jets 3-6 jets 0-3 jets 0-2 jets - 1 b 0-3 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	q. ğ 1.7 TeV ğ 1.2 TeV ğ 1.1 TeV q 740 GeV ğ 1.1 TeV ğ 1.12 TeV ğ 1.24 TeV ğ 1.07 TeV ğ 900 GeV ğ 619 GeV ğ 690 GeV F ^{1/2} scale 645 GeV	$\begin{split} & m(\tilde{q}) = m(\\ & \text{any }m(\tilde{q})\\ & \text{any }m(\tilde{q})\\ & m(\tilde{x}_{1}^{0}) = 0\\ & m(\tilde{x}_{1}^{0}) = 0\\ & m(\tilde{x}_{1}^{0}) = 2\\ & m(\tilde{x}_{1}^{0}) = 2\\ & m(\tilde{x}_{1}^{0}) > 5\\ & m(\tilde{x}_{1}^{0}) > 2\\ & m(\tilde{x}_{1}^{0}) > 2\\ & m(\tilde{x}_{1}^{0}) = 0 \end{split}$
<u> </u>	$\tilde{\sigma} \rightarrow b \bar{b} \tilde{\chi}_1^0$	0	3 b	Yes	20.1	ĝ1.2 TeV	m(ἶ ⁰ 1)<€

[https://twiki.cern.ch/twiki/bin/view/AtlasPublic/CombinedSummaryPlots]

[elsevierconnect.com]

Implications for Future Physics Programm

- Comprehensive **Higgs properties** program
 - Relatively low energy processes (<100 GeV) stay relevant</p>
 - Experiments: keep trigger and detection thresholds low

Tests of electroweak symmetry breaking (ESWB)

- Question: is (only) the Higgs responsible for EWSB?
- Access to EWSB mechanism: longitudinal WW scattering
- Experiments: forward instrumentation important

Longitudinal WW Scattering

- Question: is SM Higgs mechanism at work or something else?
- Scattering of longitudinally polarized gauge bosons W_L⁺ W_L⁻ → W_L⁺ W_L⁻
 Without Higgs boson: cross section diverges for large CM energies (≈ 1.2 TeV)

Standard model: Higgs boson with $m_H \approx 850$ GeV **regularizes** divergence

No color exchange between initial state partons \rightarrow expect forward jets

Implications for Future Physics Programm

- Comprehensive **Higgs properties** program
 - Relatively low energy processes (<100 GeV) stay relevant</p>
 - Experiments: keep trigger and detection thresholds low

Tests of electroweak symmetry breaking (ESWB)

- Question: is (only) the Higgs responsible for EWSB?
- Access to EWSB mechanism: longitudinal WW scattering
- Experiments: forward instrumentation important

Search for physics beyond the SM

- New physics scale likely well above 1 TeV
- Accessible with higher center-of-mass (CM) energy and/or lots of luminosity

Grupe

9 07/09/2014

Parton Luminosity

- Proton-proton collisions are really parton-parton collisions with broad spread in momentum
- Discovery potential for new heavy particles (e.g. SUSY) depends available luminosity at a given partonic center of mass energy
- Convenient notation: parton luminosity (derived from QCD factorization)

$$\frac{\mathsf{d}L_{jk}}{\mathsf{d}\tau} = \int_{\tau}^{\tau} \frac{\mathsf{d}x}{x} f_j(x,\mu_F^2) f_k\left(\frac{\tau}{x},\mu_F^2\right)$$

with f_j , f_k PDFs for parton flavors j, kand $\tau \equiv \hat{s}/s = x_j x_k$

LHC High Luminosity Upgrade: Physics Case

Pileup

- High luminosity comes at a price: pileup (= simultaneous pp interactions in the same bunch crossing)
- LHC design luminosity: 2808 proton bunches/beam, 25 ns spacing → 25 pileup vertices
- Pileup 2012: 1380 bunches/ beam, **50 ns** spacing → 30+ pileup vertices
- LHC upgrade: expect 100–200 pileup vertices

High Luminosity LHC

- Goal: integrated luminosity of 3 ab⁻¹ = 3000 fb⁻¹ at 14 TeV CM energy in 10–12 years of LHC operation
 - Peak luminosity: 5×10^{34} cm⁻² s⁻¹ \rightarrow 5× LHC design
 - **25** ns bunch spacing \rightarrow 140 pileup vertices
- Upgrade of accelerator chain: many projects have to succeed together
 - **Consolidation**: magnets, cryogenics, collimation, electronics, machine protection
 - Modifications: injectors, new (quadrupole) magnets, collimators, crab cavities

Accelerator Upgrade: Some Examples

Luminosity leveling

- Very high luminosities: high pileup, short beam lifetime
- Solution: keep luminosity at approx. constant level during fill (already done in LHC Run 1 at ALICE and LHCb)
- Higher luminosity achievable by crab crossing of bunches
 - RF cavities "turn" bunches sideways → bunches collide head-on
 - Successfully used in e⁺e⁻ (KEKB), not yet in pp

Short Summary

- Physics motivation for LHC upgrades
 - Precision physics: Higgs properties and other SM measurements
 - **Electroweak symmetry breaking**: is the Higgs mechanism really at work?
 - Search for **new physics** at the highest energies and luminosities
- Many challenges for accelerators and experiments
 - High luminosity: challenging experimental environment, e.g. pileup
 - **Consolidation** and **modification** of accelerator chain, e.g. crab crossing
- LHC upgrade schedule (as of 2014)
 - 2013/2014: consolidation, upgrade to 13(14) TeV
 - 2018/19: injector upgrade
 - 2023/24: final preparation for HL-LHC

ATLAS and CMS Upgrades

Tracking, Vertexing, and B-Tagging

Tracking & vertexing

- Charged particle tracking at small distances (~5 cm) from collision point: precise reconstruction of vertices
- Charged particle tracking at large distances (~1 m): precise momentum measurement

B-tagging:

- Identify hadrons with b-quarks mainly via their long lifetimes (picoseconds)
- Parts of the tracks from B hadron decays: large impact parameters and/or displaced secondary vertex
- Low particle momenta important

Triggering at the LHC

ATLAS-Trigger Detector 1 TB/s Data Rate Time per Event ~2,5 µs **First Trigger Level** 120 GB/s Second ~10 ms **Trigger Level** 5 GB/s ~1 s Event Filter 300 MB/s

Challenge: data rate ("needle in the haystack" problem)

- Processing of up to 1 billion pp collisions per second (40M bunch crossings, 25 simultaneous pp collisions each)
- Only a few 100 of these collisions contain interesting physics
- Solution: Trigger = multi-level online data filter
 - Level 1: simple and fast, in hardware
 - Level 2 and event filter: enough time for computer farm

High-Luminosity Challenges I: Radiation

- At high luminosity:
 - High channel occupancy (= fraction of bunch crossings in which given channel fires)
 - Rule of thumb: tracking works up to occupancies of ~1%
 - Solution: reduce occupancy by increasing detector granularity
 - Constraints: material budget, power consumption, data transfer rates

Radiation damage:

- Aging of components closest to interacting point → limited lifetime
- Solution: design radiation-hard detectors and electronics
- Constraints: availability, cost

High-Luminosity Challenges II: Trigger Rate

- Physics requirement: keep trigger thresholds for key objects low at high luminosity
- Simulations show: insufficient reduction of single lepton trigger rate with p_T threshold
- Possible way outs:
 - Make existing triggers more granular
 - Use tracking information in trigger
- Challenge: trigger must process many more channels within same trigger latency

ATLAS Upgrade Matrix

Subsystem	From 2013/2014	From 2018	From 2023
Silicon Pixel	New Beam Pipe, Insertable B-Layer		New Tracker
Silicon Strips	—	—	New Tracker
Electromagnetic Calorimeter	Consolidation	Finer Granularity in Trigger	New Electronics, Forward Calo
Hadronic Calorimeter	_	—	New Electronics, Forward Calo
Muon System	Endcap Extension	New Small Wheels (Forward)	New Electronics
Trigger	_	New e/Jet Triggers, Fast Tracker (2015)	Complete Replacement

+ several smaller projects

ATLAS Upgrade Matrix

Subsystem	From 2013/2014	From 2018	From 2023
Silicon Pixel	New Beam Pipe, Insertable B-Layer		New Tracker
Silicon Strips	_	_	New Tracker
Electromagnetic Calorimeter	Consolidation	Finer Granularity in Trigger	New Electronics, Forward Calo
Hadronic Calorimeter		—	New Electronics, Forward Calo
Muon System	Endcap Extension	New Small Wheels (Forward)	New Electronics
Trigger		New e/Jet Triggers, Fast Tracker (2015)	Complete Replacement

+ several smaller projects

CMS Upgrade Matrix

Subsystem	From 2013/2014	From 2018	From 2023
Silicon Pixel	New Beam Pipe	New Pixel Detector (ready for 2017)	New Tracker Forward Coverage?
Silicon Strips	Consolidation	_	New Tracker
Electromagnetic Calorimeter	_	Improved Trigger Primitives	Endcap Replacement
Hadronic Calorimeter	New Photon Detection	New Electronics & Photon Detection	Endcap Replacement
Muon System	Complete Coverage	Improve Trigger, Prepare Electronics	New Electronics, Forward Coverage?
Trigger	New L1 Trigger (ready for 2016)	_	Complete Replacement
	+ several sm	aller projects	

CMS Upgrade Matrix

Subsystem	From 2013/2014	From 2018	From 2023
Silicon Pixel	New Beam Pipe	New Pixel Detector (ready for 2017)	New Tracker Forward Coverage?
Silicon Strips	Consolidation	_	New Tracker
Electromagnetic Calorimeter		Improved Trigger Primitives	Endcap Replacement
Hadronic Calorimeter	New Photon Detection	New Electronics & Photon Detection	Endcap Replacement
Muon System	Complete Coverage	Improve Trigger, Prepare Electronics	New Electronics, Forward Coverage?
Trigger	New L1 Trigger (ready for 2016)		Complete Replacement
	+ several sm	aller projects	

ATLAS Insertable B-Layer (IBL)

Goals:

- Add redundancy to current pixel detector
- Improve tracking, vertexing, b-tagging for high pileup
- Establish new technologies for HL-LHC

ATLAS solution: Insertable B-Layer

- 4th pixel detector layer, sensors at r = 33 mm
- New readout chip, advanced planar and 3D pixel sensors
- Very low material budget: 0.015 X₀

Installation during LS1 (2013/2014)

- Completely inserted: May 7, 2014
- Currently being commissioned

efficiency 006 b 000 b 000 b

700

600

500

400

300

200

100

Rejection at 60% b tagging

IP3D+SV1

50

Upgrade of CMS Silicon Pixel Detector

- Goal: similar performance in much harsher environment → tracking, vertexing, b-tagging, ...
- Solution: new four-layer pixel detector
 - Innermost radius: 29 mm
 - New digital readout chip
 - Ultra-lightweight mechanics, CO_2 cooling \rightarrow reduced material budget: 0.015 X_0 per layer

Installation steps

- LS1: new beampipe
- Modular design: Installation during 3-months technical stop (planned for 2016/2017)

ATLAS Calorimeter Trigger

- Goal: maintain high electron trigger efficiency for low-p_T objects
- Solution: improve electron-jet discrimination at L1
 - Improved L1 calorimeter trigger
 granularity (currently: Δη×Δφ = 0.1×0.1)
 - Better discrimination via shower shape algorithms already at L1
 - New digital processing (replacing analog sums) to prepare for HL-LHC
 - Installation plan:
 - LS1: slice of new system for tests
 - LS2: full installation

07/09/2014

27

Karlsruhe Institute of Technol

ATLAS Fast TracKer (FTK)

Goal: improve triggering at high luminosity (esp. track-based triggers)

- Solution: "level-1.5" trigger
 - After L1 trigger accept: send silicon pixel & strip data to fast processors for pattern recognition and tracking → provide tracking information for L2
 - Key technologies: associative memory for pattern recognition, fast FPGAs for tracking

Preparing for the Future: Upgrades of the LHC Experiments

ATLAS & CMS Trackers for HL-LHC

ATLAS & CMS: replacement of entire tracker

- End of lifetime for current trackers
- Increase granularity, e.g. shorter silicon strips
- Improved silicon sensors and readout chips
- Improved services: cooling (CO₂), powering (DC-DC or serial), ...

Extensive **R&D** programs, e.g.

- Robust light-weight detector designs (ATLAS)
- Radiation hard silicon sensors ("HPK Campaign", CMS)

ATLAS HL-LHC Design: 4 Pixel + 5 Strip Layers (Barrel)

64 strips 80um Baby PA 128 strips Test-structures 80/44un MOS, diode, Cap B-/F-Pix (PSI46 footprint) Multigeometry-SSD **Multigeometry-Pixel** (MSSD) (MPix) 12 regions 12 regions 32 strips L_{strip}: 1.25/2.5mm 70/80/120/240um R_{poly} and R_{PT} biasing Baby Strixel 4x128 strips **Test-structures** [A. Dierlamm]

Baby_Add

CMS Tracker Upgrade: p_T Modules

- Goal: keep p_T thresholds for single lepton triggers low
- Idea: exploit tracking information as early as possible in **trigger** (L1)

Novel concept: **p**_T modules

- Goal: suppression of low- p_T tracks (< 1–2 GeV) for trigger
- Idea: local coincidence of two sandwiched silicon detector layers
- Close to collision point: **PS modules** (pixels + strips)
- Larger radii: 2S modules (strips + strips)

ATLAS and CMS Upgrades: Short Summary

- Physics guidance for upgrade so far: **Higgs**, but nothing else
 - Tracking, vertexing, triggering at **low transverse momenta** stays relevant
 - Forward instrumentation increasingly important
- ATLAS and CMS upgrades towards HL-LHC
 - Goal: maintain (at least) current performance in much more difficult environment (high occupancy, radiation damage, ...)
 - Many improvements to detectors, readout electronics, triggers
 - Special focus: replacement of tracking detectors

ALICE and LHCb Upgrades

The Case for ALICE Upgrades

ALICE Upgrade Plans

Upgrade of online systems and of offline reconstruction and analysis framework and code

Example: ALICE Tracking Upgrade

Goal: improve impact parameter resolution and tracking efficiency

Solution:

- Move closer to interaction point: 22 mm
- Reduce material budget: 0.003 X₀/layer
- Increase granularity: 7 layers, smaller pixels
- Fast readout (50 kHz), fast insertion/removal

Technology choices:

- 7 pixel layers or 3 pixel + 4 strip layers
- Option 1: hybrid pixels (current LHC pixel technology)
- Option 2: monolithic pixels (sensing layer integrated into CMOS chip)

3D Cutaway View

Monolithic Pixels (0.18 µm CMOS)

[CERN-LHCC-2012-013]

The Case for LHCb Upgrades

LHCb rates:

- Rate limitation: 1 fb⁻¹ per year
- Upgrade: running at 10³³ cm⁻² s⁻¹ with 40 MHz readout → 5 fb⁻¹ per year

Many extensions to physics program

- Rare decays: flavor-changing neutral currents and search for exotic decays
- New sources of CP-violation in the B meson system
- Mixing and CP violation in the charm sector
- LHCb = general-purpose forward detector
- Upgrades not tied to LHC upgrades

CERN-LHCC-2011-001]

Ulrich Husemann Institut für Experimentelle Kernphysik (IEKP)

LHCb Upဋ

- **Replacement** of VELO and tracking system: new technologies
- All subsystems: new 40 MHz front-end electronics, adaptations for highluminosity running

инср

Example: LHCb DAQ/Trigger Upgrade

- Current L0 hardware trigger upgraded to optional low-level trigger (LLT)
 - Zero-suppression \rightarrow 30 MHz trigger-less readout to high-level trigger (HLT)
 - Replacement of all front-end electronics
- HLT: full event selection in software \rightarrow 20–100 kHz output rate

ALICE & LHCb Upgrade Schedules

	ALICE	LHCb
Writeups	Conceptual Design Report for Inner Tracking (Sep 2012), TDRs 2013/4	Framework Technical Design Report (2012), Subsystem TDRs 2013/4
Installation/ Commissioning	LS2 (2018/9)	Preparations: LS1 New Detectors: LS2 (2018/9)
Luminosity Goals	>10 nb >6 pb	> 50 fb
Running Scenario 2019	PbPb interactions at 50 kHz (6×10 →	pp interactions at 20 kHz (2×10 →

Beyond LHC

Complementary Colliders: e⁺e⁻

Physics at e⁺e⁻ colliders

- Traditional distinction: hadron colliders = discovery machines e⁺e⁻ colliders = precision machines → complementary approaches (however: lots of precision physics at Tevatron and LHC)
- Physics: e⁺e⁻ collider as Higgs boson and top quark factory
- Advantage of e⁺e⁻: clean leptonic initial state with known kinematics
- Disadvantage: **lower CM energy** compared to hadron colliders
- Most popular approach: linear e⁺e⁻ colliders (see e.g.: <u>linearcollider.org</u>)
 - Advantage: no energy loss through synchrotron radiation
 - Disadvantages: **length** (> 30 km), beams can only be used **once**
- Recently: circular e⁺e⁻ colliders getting en vogue again

- Superconducting collider with CM energies of 0.5 1 TeV
- Possible host site: Japan, possible start of construction: after 2018
- Future concept: **Compact Linear Collider** (CLIC) $\rightarrow \sqrt{s} \le 5$ TeV

Common detector concepts for both colliders

ILC Detectors compared to HL-LHC

	HL-LHC: ATLAS & CMS	ILC: SID & ILD	
Radiation Hardness	Yes (10	No	
Beam Structure	25 ns, synchronous	300 ns, bunch trains	
Trigger	Yes, strong data reduction	No, occupancies low	
Material Budget (Central)	< 0.5	< 0.2 [after M. Sta	anitz

HE-LHC: High Energy LHC

Superconductor Critical Currents

[http://fs.magnet.fsu.edu/~lee/plot/plot.htm]

- Higher energies at the LHC after 2035
 - Increase of LHC center-ofmass energy to 26–33 TeV
 - Replace dipole magnets → practically new machine
 - Physics: "final word" on electroweak symmetry breaking, discoveries?

Technological challenges

- Novel materials for highfield superconducting magnets (up to 20 Tesla)
- New injection chain (SPS at 1–1.3 TeV)
- Collimation, beam dump, synchrotron radiation, ...

FCC: Future Circular Colliders

- CERN proposal: new multi-purpose 100 km tunnel infrastructure
 - FCC-hh: hadron collider at 100 TeV
 CM energy (with 16-Tesla magnets)
 - FCC-ee (formerly: TLEP): e⁺e⁻ collider between Z resonance and tt (90–350 GeV CM energy)
 - FCC-ep (optional): ep collider (à la HERA)
 - International study launched in February 2014
- Similar study ongoing in China
 - **50–70 km** tunnel
 - SppC: pp @ 50–90 TeV CM energy
 - CPEC: e⁺e⁻ @ 120 GeV CM energy

[http://tlep.web.cern.ch]

Summary & Conclusions

CERN's goal: exploit full LHC physics potential until ~2035

- Multi-phase upgrade program of accelerator chain and experiments
 - Projects grouped around three long shutdowns (LS): LS1 (2013/2014), LS2 (2018/2019), LS3 (2023/2024)
 - ATLAS/CMS: keep comparable performance at highest luminosities
 - ALICE/LHCb: optimize detector and readout for highest rates

Future lepton colliders (linear or circular)

- Precision machines, complementary to LHC
- Experimental challenges very different

Far future: high-energy LHC? Combined pp and ee maschine?

Working Principle of a Particle Accelerator

Hadron Collider Kinematics

Conventional definition of kinematic variables at hadron colliders (derived from onion-shell structure of detectors)

- **Right-handed cylindrical** coordinate system (r, θ , ϕ)
- Polar angle θ : angle with z axis (= beam axis)
- Azimuthal angle φ: angle with the x axis (pointing towards center of the ring)

Transverse Quantities at Colliders

- Hadron collider kinematics (pp, pp̄)
 - Collisions of partons with unknown fraction x_i of longitudinal component of proton momentum (approximation: all partons collinear to beam)
 - Rest frame of parton-parton collision unknown
 - \rightarrow center-of-mass energy unknown

Transverse variables: Lorentz-invariant quantities, e.g. transverse momentum p_T

$$p_T = \sqrt{p_x^2 + p_y^2} = p \sin \theta$$

Particle Detectors: Detection Principles

Particle Detection in CMS

LHC Choice for Tracking Detectors: Silicon

- Innermost part of LHC tracking detectors: silicon hybrid pixel detectors
 - Detector = semiconductor **diode** with pn junction in reverse bias \rightarrow **depletion zone**
 - Charged particles ionize detector material \rightarrow electron/hole pairs induce signal

Material Budget

Energy loss of **electrons** in matter

- Low mass → dominant effect: **bremsstrahlung**
- **Energy loss** formula (X measured in g cm⁻²):

$$-\left(\frac{dE}{dX}\right)_{rad} = 4\pi r_e^2 Z^2 \frac{N_A}{A} E \ln \frac{183}{Z^{1/3}} \equiv \frac{E}{X_0}$$
reduced by factor 1/e after X₀
with $X_0 = \left(4\pi r_e^2 Z^2 \frac{N_A}{A} \ln \frac{183}{Z^{1/3}}\right)^{-1}$ radiation length

Photons: absorption in matter

- Dominant effect at high energies: **e⁺e⁻ pair production**
- ambert-Beer law:

$$I(X) = I_0 \exp[-\mu_p X] \text{ with } \mu_p = \sigma_P \frac{N_A}{A} \text{ and } \sigma_P = 4\alpha r_e^2 Z^2 \left[\frac{7}{9} \ln \frac{183}{Z^{1/3}} - \frac{1}{54}\right]$$

Comparison with above definition of radiation length:

$$\mu_{P} = \sigma_{P} \, \frac{N_{A}}{A} \approx \frac{7}{9} \frac{1}{X_{0}}$$

photon intensity reduced by factor $1-e^{-7/9} \approx 0.54$ after X₀

electron intensity

5

- Heavy ion collision with impact parameter b → anisotropy in momentum space
- Fourier expansion of particle distribution in momentum space

$$E\frac{\mathrm{d}^{3}N}{\mathrm{d}^{3}\mathbf{p}} = \frac{1}{2\pi} \frac{\mathrm{d}^{2}N}{p_{\mathrm{t}}\mathrm{d}p_{\mathrm{t}}\mathrm{d}y} \left(1 + 2\sum_{n=1}^{\infty} v_{n} \cos[n(\varphi - \Psi_{\mathrm{RP}})]\right)$$


```
[New J.Phys.13 (2011) 055008]
```

- Fourier coefficients
 - v₁: directed flow
 - v₂: elliptic flow
- Physics: collective flow phenomena

LHC Long Term Plan

- Goal: deliver 3000 fb⁻¹ of integrated luminosity by 2030 \rightarrow at least 5× increase in instantaneous luminosity
- Detectors must be upgraded: current detectors suffer from aging and radiation damage, keep similar performance, improve radiation hardness at high luminosity
- According to current planning: three long LHC shutdowns for upgrades
 - 2013/14: LHC center of mass energy to 13–14 TeV
 - 2018: several machine upgrades

Upgrade Benchmark Scenarios

Scenario	Peak Luminosity (cm	Number of Pileup Vertices	Integrated Luminosity (fb
Phase 1 Baseline	2×10		500
Phase 1 Worst Case	2×10 lumi leveling) 4×10		500
Phase 2 Baseline	5×10		3000
Phase 2 Worst Case	5×10 lumi leveling) 10		3000

Preparing for High Luminosity (10³⁵ cm² s⁻¹)

- Physics case as of 2012: Higgs physics + WW scattering + BSM (e.g. SUSY)
 - Relatively low p⊤ stay relevant → keep thresholds low
 - Forward instrumentation important → improve coverage (calorimetry & tracking)
 - General strategy: exploit synergies between subdetectors
 - Already now: particle flow
 - Phase 2: very close relation between tracking and triggering
- Next step: technical proposals (until 2014)

Simulated Trigger Rates vs. p_T Threshold

General Phase 1 Pixel Upgrade Strategy

Goal: similar pixel performance in much harsher environment

Modification	Impact
New digital readout chip	Front-end electronics ready for high rates
More layers: 3→4 barrel layers, 2×2→2×3 forward disks	More 3D pixel space points, more tracking redundancy
Smaller radius of innermost layer	Improved impact parameter resolution (key to excellent B-tagging at high pileup)
Improved mechanics, cooling, and powering	Reduced material budget: less multiple scattering, fewer photon conversion

59 07/09/2014

Preparing for the Future: Upgrades of the LHC Experiments

Ulrich Husemann Institut für Experimentelle Kernphysik (IEKP)

Goal: overcome rate limitations of current readout chip (100 MHz/cm² → 250 MHz/cm²)

New CMS Pixel Readout Chip

Strategy: modest evolution of current chip (staying at 250 nm)

- First chip iteration:
 - Digital readout: 8-bit ADC for pulse height
 - 6th metal layer → reduce cross-talk, lower threshold
 - Larger buffers for data and time stamps
 - First version received from foundry, some minor issues, in testing phase
- Second chip iteration:
 - Improved column drain architecture

New Silicon Pixel Detector

- Preparatory activities in LS1
 - New beam pipe: thinner, smaller outer diameter
 - (Improve tracker seal to operate strip tracker colder)
- TDR submitted to LHCC (September 2012)
- Installation: year-end shutdown 2016
- German contributions: Aachen IB, DESY, UHH, KIT
 - Production & test of new 4th layer: 768 modules
 - Two production lines: UHH+DESY, KIT+Aachen
 - Bump bonding (partially) in house

