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I. THE EXPANDING UNIVERSE

Until the beginning of the 20-th century the sky was assumed to be essentially immutable1. In 1916, right after
formulating the his theory of General Relativity, Einstein applied it to the entire Universe, in what could be considered
as the birth of modern theoretical cosmology. To do that, he generalized the length of the 4-interval (that is, the
space-time metric) of special relativity, ds2 = −c2 dt2 + dx2 + dy2 + dz2, to the most general form that agrees with
the cosmological principle: the Universe should look the same in all places (spatial homogeneity) and in all directions
(spatial isotropy).

A. The scale factor of the Universe

Here we will consider the following simplified version (that however agrees with observations) of such most general
metric metric:

ds2 = −c2 dt2 + a(t)2
(
dx2 + dy2 + dz2

)
, (1)

where a(t) is a function of time (called the scale factor of the Universe) that will be determined by dynamics.
First, let us note that the cosmological principle, and the choice of the metric (1) selects a preferred class of frames

connected by a spatial translation, those where the Universe looks homogeneous and isotropic. Technically we say
that we have broken the full symmetry SO(3, 1) of the Lorentz group down to the SO(3) group of spatial rotations.
If we are not in one of such frames we will observe stars moving towards us along a specific direction. Then we can
go to the preferred frame by performing a boost with a velocity equal to that of the stars.

The choice of the metric (1) has then the following meaning. If I have two test bodies “at rest” (that is, with
respect to whom the Universe looks isotropic) that at a time t1 are at a distance L, then at time t2 the distance of
the two bodies will be L×a(t2)/a(t1). Note that this definition allows to measure only a(t2)/a(t1), while the absolute
value of a at some given time is conventional (and usually set to be equal to unity for t = t0, where t0 is the current
value of t). To complete the above definition in a rigorous way, one has to define the way one measures - at least in
thought experiment - the distance between the two bodies. The standard way of doing this is to send a light ray from
the first to the second body, have it reflected on the second body, and see how much time ∆t it takes for the light
ray to come back to the first body. Then the distance between the two bodies is c∆t/2. Note that this definition
makes sense only as long as L is such that ∆t� t1− t0, otherwise one has to perform more complicated calculations.
However this is sufficient for a rigorous operative definition of what we mean by the metric (1).

The first observational evidence that a(t) is not constant and is actually increasing with time came in 1929 from the
measurement of the redshift of the light from far galaxies performed by Edwin Hubble. Hubble effectively measured
L as the wavelength of the light emitted by a distant galaxy. He found that the lightwaves emitted by far galaxies
received more stretching than those emitted by nearby galaxies, that was evidence for an expanding Universe.

B. Friedmann’s equation

The behavior of a(t) is determined by solving Einstein’s equations, that determine in general the behavior of
geometry in the presence of matter. For the geometry (1) and assuming a homogeneous and isotropic distribution of
matter with energy density ρ (energy per unit volume), the behavior of a(t) is determined by the Friedmann equation

ȧ2

a2
=

8πG

3

ρ

c2
, (2)

1 Even if already in the 19-th century the so called Olbers’ paradox was showing that such an assumption might be wrong: if there were
stars everywhere in an eternal and infinite Universe, then there would be a star along each line of sight from the earth, and therefore
the night sky should be infinitely bright.
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with G Newton’s constant and an overdot denoting derivative with respect to the time t.
Let us consider a gas of N particles, all with the same mass m and the momentum p in a volume V . Then the total

energy density of the system, computed at a reference time t1 is N
V

√
m2 c4 + p2 c2. At a later time t2 the volume

V will have increased by a factor (a(t2)/a(t1))
3

whereas the momentum will have decreased by a factor a(t1)/a(t2)
(since p ∝ λ−1 with λ ∝ a the wavelength of the particle).

Therefore we have

ρ(t2) =

 ρ(t1)
(
a(t1)
a(t2)

)3
nonrelativistic matter, p� mc

ρ(t1)
(
a(t1)
a(t2)

)4
relativistic matter, p� mc

. (3)

It is customary to define an equation of state parameter w ≡ p/ρ, such that w = 0 for nonrelativistic matter and
w = 1/3 for ultrarelativistic matter. Then the relations (3) can be generalized to

ρ(t) = ρ(t0)

(
a(t0)

a(t)

)3(1+w)

, (4)

for w =constant, where we have set t0 as the current value of t. Note that eq. (4) implies that for w < −1 the
energy density of matter would increase as the Universe expands, violating even the weakest requirements of energy
conservation one can think of. We will therefore assume, as customary, that w ≥ −1.

C. Solving Friedmann’s equation – the Big Bang

Insterting eq. (4) into eq. (2) and solving for a(t) we obtain

a(t) =

[
a(t0)

3
2 (1+w) +

3

2
(1 + w) H0 (t− t0)

] 2
3(1+w)

, (5)

where we have defined

H0 =

√
8πG

3

ρ(t0)

c2
a(t0)4 . (6)

Eq. (5) shows that there is a value of t for which a crosses zero. This is the Big Bang singularity. It is a mathematical
that is present only if we assume that the Friedmann equation (2) is unchanged as a→ 0, that is for diverging energy
densities. Since we expect that Einstein gravity receives corrections in the presence of very high energy densities, this
assumptions is not guaranteed, and the Big Bang singularity should be seen as a merely mathematical singularity,
the physical singularity being taken care by unknown physics taking over at high energy scales. It is convenient to
consider

By defining t0 in such a way that the singularity in eq.(5) accurs at t = 0, we obtain

a(t) =

(
3

2
(1 + w) H0 t

) 2
3(1+w)

, (7)

In particular,

a(t) =

{ (
3
2 H0 t

) 2
3 nonrelativistic matter, w = 0

(2H0 t)
1
2 relativistic matter, w = 1/3

. (8)

II. THE HORIZON PROBLEM

Let us now see to what amounts the horizon problem, that is one of the main motivations for inflation. We will
first see a heuristic argument and then a rigorous one.



3

A. A heuristic derivation

Figure 1 shows a section of the sky observed in a large galaxy survey. We are at the center of the plot and the
distance from center of each dot corresponds to the redshift z of each galaxy. The redshift z is related to the time tem
at which the light we see was emitted by the galaxy by 1 + z = (a(t0)/a(tem)) with t0 the current age of the Universe,
about 14 billion years. Using the expression (8) during matter domination (not quite an accurate approximation for
the current Universe, but still good for our purposes) we obtain tem = t0/(1 + z)3/2.

Therefore a galaxy at z ' 1 was the way we see it when the Universe was a factor 2−3/2 ' .35 younger than now,
that is when the Universe was only about 5 billion years old. Let us forget, for the time being, the expansion of the
Universe and let us simply assume that the Universe was created infinitely extended and not expanding at t = 0.
Then the galaxy G1 in the left pane of figure 1 emitted its light at t = 5 billion years. This light reached us after
a trip of 14 − 5 = 9 billion years. At the time of the emission of light, only a a circle of radius 5 billion light years
from G1 knows about its existence, since no information can travel faster than light and no light could be emitted by
G1 before t = 0, that is 5 billion years before. However we see galaxies on the opposite side of the sky, in particular
galaxy G2, that are at a distance 9 × 2 = 18 billion light years from G1. Galaxies around G2 look pretty much like
galaxies around G1 even if, at the time at which we are seeing them, they could not know about each other.

Now if the Universe was created by some random phenomenon there is no reason why causally disconnected region
should look the same way. This is the horizon problem: why parts of the Universe that in the past were beyond each
other’s horizon seem to know about each other, to the point that they look very similar?

Two comments about the above argument: (i), maybe the fact that we are ignoring the expansion of the Universe
is an exceedingly rough approximation and (ii) after all this is a problem of initial conditions, and there is nothing
bad by assuming that the Universe was set-up to look very homogeneous from the beginning. Concerning (i), as
we will see below, one can make a rigorous statement and show that the problem is also present in a matter- or
radiation-dominated expanding Universe. However (ii) is a valid objection. Yet, “coincidences” sometimes mean that
Nature is trying to tell us something. As we will see, inflation, invented to solve the horizon problem – or, if one
prefers – to explain the coincidence of a homogeneous yet apparently causally disconnected Universe, will not only
solve this problem, but make other predictions that are tested experimentally.

B. A rigorous derivation

A rigorous derivation of the horizon problem is the following. Let us assume that the Universe is radiation dominated
(this is a good approximation for the Early Universe, since the energy densities were much larger then, leading to
larger momenta and relativistic particles). Then according to the derivation of the previous section a(t) = (2H0 t)

1/2.
It is now convenient to define a new time coordinate τ , called conformal time, defined as

τ(t)− τ1 ≡
∫ t

t(τ1)

dt′

a(t′)
. (9)

The advantage of this definition is that in terms of conformal time the metric reads

ds2 = a(τ)2
(
−c2 dτ2 + dx2 + dy2 + dz2

)
, (10)

that is the same form as the Minkowski metric times an overall function of time. Since lightrays move along lines for
which ds2 = 0, one can apply to the expanding Universe the techniques of Minkowski diagrams, that are usually used
to study the causality in flat, infinite space.

What is the function a(τ)? Let us compute it explicitly in the case of a radiation dominated Universe. We have
then, from eq. (9)

τ =

√
2 t

H0
, radiation domination (11)

where we have set the integration constant to have τ = 0 at the Big Bang t = 0. By substituting t(τ) into a(t) we
find

a(τ) = H0 τ . (12)

The latter equation has an important implication: the time τ does not extend to τ < 0. This implies that, when
drawing Minkowski diagrams for the spacetime metric (10) we can only use the top portion of the diagram. This has
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FIG. 1: Left: a map of the sky from the BOSS galaxy survey (each dot is a galaxy). The galaxies G1 and G2 are shown
surrounded by the area that was in causal contact with them at the time they emitted the light we are seeing today. The
two causally connected regions do not overlap, and therefore we should not expect to have similar properties (same density of
galaxies etc...). Right: a Minkowski diagram showing the situation described in the left panel.

important implications for the causal structure of the spacetime. Suppose we live at x = 0 in the Minkowski diagram
of figure 2 and the event “observation of light from galaxies G1 and G2” is associated to the point marked “here and
now” in the diagram. The lines connecting G1 and G2 to the point “here and now” are at 45◦ in the diagram, since
they are associated to lightrays.

Now the points G1 and G2 can be affected only from the regions S1 and S2 respectively since they cannot be affected
by anything traveling faster than light. Therefore there is no reason a priori why the region around G1 should look
similar to that around G2, since they have never been in causal contact.

III. INFLATION AS A SOLUTION OF THE HORIZON PROBLEM

By looking at figure 2 we see how to solve the horizon problem. If we were allowed to extend the diagram below
the line τ = 0 then the lines below starting from G1 and G2 and extending downwards would cross at some points,
determining a region of spacetime that in the past of both G1 and G2 and that could have created the conditions
form which G1 and G2 can be similar.

To see whether it is possible to perform such an extension of the Minkowski diagram, let us calculate a(τ) for
arbitrary values of w. We will not keep all of the w-dependence in what follows, but only the main features that are

necessary to outline the argument. Form eqs. (9) and a(t) ∼ t 2
3 (1+w) we obtain

τ ' 3 (1 + w)

1 + 3w
t

1+3w
3 (1+w) + constant . (13)

Now, as long as 1+3w > 0, we can set τ = 0 for t = 0 and proceed as in the case of a radiation dominated Universe
discussed in the previous section, obtaining that τ cannot be negative.

However, when 1 + 3w < 0, one has that τ → −∞ as t → 0: the Big Bang singularity in this case is mapped to
τ → −∞ and τ does in this case extend to negative values! Therefore the solution to the horizon problem is simply
to glue, in figure 2, a period of expansion with w < −1/3 below the radiation dominated epoch.

Note that, from a ∝ t 2
3 (1+w) , it follows that the condition w < −1/3 corresponds to the condition ä > 0. Therefore

we will have the following general definition:

Inflation is a period of accelerated expansion
.

Besides leading to the solution of the horizon problem, inflation erases any primordial inhomogeneity. In fact,
while in Minkowski space a region containing a matter overdensity tends to attract more matter and therefore to
become even more overdense, the expansion of the Universe counteracts this effect by pulling particles away from each
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other. Inflation is maximally efficient at this, leaving a smooth Universe after a sufficiently long period of accelerated
expansion.

IV. SLOW ROLL INFLATION

From here on we will use “natural” units c = ~ = 1. We will also trade Newton’s constant for the reduced Planck
mass MP defined as

MP ≡
1√

8πG
' 2.4× 1018 GeV . (14)

A. The inflaton

The simplest example of matter leading to an inflating Universe is a cosmological constant, defined as a form
of matter with w = −1. The solution of Friedmann equation is in the case given by a(t) = eH0 t with H0 =√
ρ/3M2

P =constant, where we have set the scale factor equal to unity at t = 0. In terms of conformal time τ we
have a(τ) = − 1

H0 τ
, where a = 1 at τ = −1/H0.

A cosmological constant represents an excellent source of inflation. Unfortuntely it is an overkill, since inflation is
so perfect in this case that it never ends!

What we really need is slow roll inflation: a system that behaves almost like a cosmological constant, but that in a
sufficiently long time leads to the end of inflation. The most studied example of such a system is provided by a scalar
field φ with a potential V (φ). In order for φ to mimic a cosmological constant, V (φ) must be extremely flat, at least
for some range of values of φ. A typical potential for the inflaton is plotted in figure 3.

Analogously to a one-dimensional problem in classical mechanics, the field φ has a energy density

ρφ =
φ̇2

2
+ V (φ) , (15)

and satisfies the Klein-Gordon equation in an expanding Universe

φ̈+ 3
ȧ

a
φ̇+

dV (φ)

dφ
= 0 . (16)

Now in order for the field to mimic a cosmological constant, the kinetic energy must be negligible with respect to
the potential energy: φ̇2 � 2V (φ). Moreover this condition must be maintained for long enough, that is, the first
term in eq. (16) must be negligible with respect to the remaining two.

This is the so-called slow-roll approximation where the equations of motion reduce to

3H φ̇+
dV (φ)

dφ
' 0 ,

H2 ' V (φ)

3M2
P

, (17)

that can be solved by quadratures for any given V (φ).
It is usual to define two slow roll parameters

ε ≡ M2
P (dV/dφ)2

2V (φ)2
, η ≡ M2

P (d2V/dφ2)

V (φ)
, (18)

such that, using the slow-roll equations (17) we obtain

φ̇2

2V
' ε

3
,

φ̈

dV/dφ
=
η − ε

3
(19)

so that the slow roll approximation boils down to the slow roll conditions

ε� 1, |η| � 1 . (20)

It is possible to show that one has accelerated expansion (that is, inflation) if and only if the slow-roll conditions
are satisfied. The advantage of the formulation (20) of the slow-roll conditions is that they depend only on the
potential and not on the dynamics. For instance for a monomial potential V (φ) ∝ φa we have ε = n2M2

P /(2φ
2),

η = n (n− 1)M2
P /φ

2 so that inflation occurs as long |φ| �MP , and the larger |φ| the better the slow-roll conditions
are satisfied.
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V(φ)

φ

FIG. 2: A typical shape of an inflationary potential, with a flat region able to support inflation and a minimum where V ' 0.
For comparison, the thinner line represents a cosmological constant: good to do inflation (it approximates the potential V (φ)
in the region where inflation occurs), but not good to describe the vacuum today.

B. Solving the slow-roll equations

During inflation, it is useful to use, instead of time, a a variable known as the number of efoldings Ne from the end
of inflation. It is defined as

Ne ≡ log

(
aend
a(t)

)
, (21)

where aend is the scale factor of the Universe at the end of inflation. It is easy to show that

Ne(t) =

∫ tend

t

ȧ

a
dt (22)

By trading t for φ as an integration variable via dt = dφ/φ̇ and by using the slow roll equations (17) one can write

Ne(φ) =
1

M2
P

∫ φ

φend

V (ϕ)

dV (ϕ)/dϕ
dϕ (23)

that allows to determine, for any given potential V (φ), the value of the inflaton φ corresponding to a given number
of efoldings. In particular, the solution of the horizon problem requires about 60 efoldings of inflation. Nevertheless
most models yield many, many more efoldings of inflation.

C. The end of inflation

How does inflation end? At some point the slow-roll conditions are not satisfied any more, and the field φ reaches the
bottom of its potential, around which performs several oscillations while decaying into lighter particles. At some point
the energy density in the Universe is dominated by these decay products of the inflaton rather than by the inflaton
itself. Once such decay products thermalize, we can say that the process of reheating after inflation is concluded, and
we enter the radiation dominated era of the Hot Big Bang.

V. INFLATION, SYMMETRY BREAKING, AND THE STANDARD MODEL

The fact that the inflaton φ can take large excursions implies that it can lead to phenomena similar to the symmetry
breaking present in the Standard Model. For instance, if the inflaton is electrically charged, then during inflation
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it will have a non vanishing expectation value, and electromagnetism will be broken (⇒ no massless photons). Of
course, since today photons are massless, the minimum of the potential of such a charged inflaton should lie at φ = 0.

Usually, however, the inflaton is considered to be a gauge singlet (even if there is no real reason for this to be
the case). As a consequence it can couple to the Standard model either through the Higgs mass term or through
dimension-5 and higher operators. Given the fact that the inflaton can get very expectation values, one in general
expects that the Lagrangian of the Standard Model gets large corrections during inflation.

For instance, adding to the standard Higgs potential

VHiggs =
λ

4

(
|h|2 − v2

)2
, (24)

a small coupling to the inflaton φ of the form

δVHiggs =
λ′

2
|h|2 φ2 , (25)

gives a contribution to the Higgs potential ∼ λ′ |h|2 M2
P during inflation, when φ & MP , that, as long as λ′ &

v2/M2
P ' 10−32 dominates the standard negative quadratic term of the Higgs potential and leads to restoration of

the electroweak symmetry during inflation if λ′ > 0. Of course, if λ′ < 0, the the electroweak symmetry is broken
even more during inflation.

Because of this, the behavior of the Standard Model during inflation is extremely model dependent: a problem for
predictivity, but an advantage for model builders!

VI. COSMOLOGICAL PERTURBATIONS DURING INFLATION

For the time being we have focused on the dynamics of the homogeneous inflating Universe. Now we will discuss
the evolution of the quantum mechanical fluctuations of the inflaton. It is convenient to start our discussion by
considering a test massless scalar field in an expanding Universe.

The action for such a field is obtained by the standard action for a massless scalar on Minkowski space S =
1
2

∫
d3x dt

(
ψ̇2 − (∇ψ)

2
)

by replacing dx by a dx. It is also convenient to use conformal time, that is to replace dt by

a dτ everywhere. Let us also Fourier transform in the three spatial dimensions so that we use

ψ̃(k, τ) =

∫
d3x

(2π)3/2
e−ikx ψ(x, τ) (26)

Then we obtain the action

S =
1

2

∫
d3k dτ a4(τ)

(
ψ̃′2

a(τ)2
+

k2

a(τ)2
ψ̃2

)
, (27)

where we denote by a prime the derivative with respect to conformal time: ′ ≡ d
dτ .

To proceed we define a new field ψ̃c(k, τ) ≡ a(τ) ψ̃(k, τ) that is canonically normalized (that is, the coefficient of

the kinetic term is 1
2 ). The field φ̃c satisfies the following equation

ψ̃′′c + k2 ψ̃c −
a′′

a
ψ̃c = 0 , (28)

that we can rewrite in a more suggestive form as

−ψ̃′′c +
a′′

a
ψ̃c = k2 ψ̃c , (29)

that is precisely the same form of the time-independent Schrödinger equation of a ”particle” on mass m = 1/2,
once we identify k2 with the energy and a′′/a with the potential. The main difference with respect to the standard
Schrödinger equation is that in our case the ”coordinate” is (conformal) time, rather than space.

We assume for simplicity that the equation of state parameter during inflation is exactly w = −1, and that inflation
is immediately followed by a period of radiation domination, so that

a(τ) =

{
(−Hi τ)

−1
, for−∞ < τ < τend < 0

a(τend) +Hr (τ − τend) forτ > τend
, (30)
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a’’/a

ττend

FIG. 3: The “effective potential” a′′/a for a period of inflation followed by an epoch of radiation domination. Also, a schematic

representation of a wave function ψ̃c(τ).

with Hi and Hr constants. Therefore the “potential” a′′/a equals 2/τ2 for τ < τend and is vanishing for τ > τend, as
shown in figure 3.

By looking at figure 3, we see that the Schrödinger problem is analogous to that of scattering on/tunneling through
a potential barrier, with a crucial difference: in the usual problem of tunnelling through a barrier, one assumes an
incoming and a reflected wave on the left of the wall as well as a trasmitted wave to the right, and flux conservation
implies that the transmitted wave cannot be larger to the incident one. In our case, we cannot have a reflected
wave, since this would imply that the modes go “backwards in time”. Therefore we cannot impose flux conservation
and the outgoing wave for τ > τend can be much larger than the incoming one. This amplification of the incoming
wave is interpreted as the generation of large, classical fluctuations of the φ field starting from its quantum, vacuum
fluctuations.

Lte us now solve eq. (29) in the presence of the potential of figure 4. An exact solution is possible, however it is
more instructive to find an approximate solution. We see immediately that we can solve the equation in three regions:

1. in the first region τ large and negative and the potential is negligible with respect to k2. This first region ends
at τ ' −1/k;

2. in the intermediate region −1/k . τ < τend the ”potential” dominates over the k2 term;

3. for τ > τend there is no potential and the evolution is controlled by the term in k2 again. This part of evolution
is not that interesting and we will not care about it here.

Now in the region 1. the solution of the Schr̈odinger equation will be given by plane waves ψ̃c = ψ̃1
c e
−ikτ , with

ψ̃1
c the overall normalization of the wave function that we will determine below. In region 2., by neglecting the

contribution from k2 on the right hand side of eq. (29) we obtain that the growing solution is simply ψ̃c = ψ̃2
c a(τ),

where the constant ψ̃2
c is determined by imposing that ψ̃c is continuous when we go from region 1. to region 2.

Therefore, up to a phase, ψ̃2
c = ψ̃1

c/a(τ = −1/k). After the end of inflation the evolution of ψ̃c is trivially given by
oscillations, and we will not care about it.

How do we determine the normalization ψ̃1
c? Going ahead with our quantum mechanical analogy, the functions

ψ̃c(k, τ) can be seen as wave functions beloning to different eigenvalues k2 of the “energy”. As such they are

orthogonal, so that we can set 〈ψ̃c(k1)|ψ̃c(k2)〉 ∝ δ(3)(k1 − k2). The proportionality constant can be determined by

dimensional analysis: since ψ has mass dimension 1, ψ̃ ∼ (mass)−3 ψ must have mass dimension −2. Since δ(3)(k1−k2)
has mass dimension −3, then the proportionality constant must have mass dimension −1. We fix the constant at
early times τ → −∞ when the system is supposed to be in vacuum. In this regime the only dimensionful scale is k1
(that equals k2 courtesy of the Dirac δ function). Therefore we must have

〈ψ̃c(k1, τ → −∞)|ψ̃c(k2, τ → −∞)〉 = C
δ(3)(k1 − k2)

k1
. (31)
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with C a dimensionless constant of order unity (that turns out to be equal to 1/2 after a more rigorous analysis -
therefore we will set C = 1/2 from here on).

By the analysis above, at the end of inflation we have that ψ̃c(k, τend) ' ψ̃c(k, τ → −∞) aend/a(τ = −1/k), so

that, remembering that ψ̃c ≡ a(τ) ψ̃,

〈ψ̃(k1, τend)|ψ̃(k2, τend)〉 =
1

a2end

δ(3)(k1 − k2)

2 k1

a2end
a(τ = −1/k)2

=
H2
i

2 k31
δ(3)(k1 − k2) , (32)

where we have used a(−1/k) = k/Hi.
The main observable we care about is the two point function, in coordinate space, of the field φ. We can define this

as2

〈ψ(x, τend))|ψ(y, τend))〉 =

∫
d3k1 d

3k1

(2π)3
e−ik1x+ik2y〈ψ̃(k1, τend)|ψ̃(k2, τend)〉 =

∫
d3k

4π k3

(
Hi

2π

)2

e−ik(x−y) (33)

that shows that the two point function of φ has the important property of being scale invariant: a rescaling of |x−y|
by a constant factor can be absorbed by a rescaling in the integration variable k and does not affect the two point
function.

In particular, by taking x = y we obtain the variance

〈ψ(x, τend))|ψ(x, τend))〉 =

∫
dk

k

(
Hi

2π

)2

, (34)

where the integral is on all the momenta the underwent amplification, that is Hi ain < k < Hi aend with ain and aend
the initial and the final scale factor of inflation respectively.

The above result (34) is extremely important. It tell that a massless field in an inflating space with Hubble
parameter H experiences a random amplification of its quantum fluctuations whose sign is undefined, whereas its
typical amplitude is H

2π per logarithmic interval in k.
Now how does this convert into observables? Up to now we have assumed that ψ was a massless test field. However

our whole analysis is valid also if ψ denotes the fluctuation of the inflaton φ about its background value: ψ = δφ.
Let us now consider two distant regions of the Universe right at the end of inflation. Inflation will end when the

inflaton φ reaches some given value φend when the slow roll conditions are violated. If φ = φend in one region of
reference, then, as a consequence of the mechanism discussed above, we will have φ = φend − δφ in a different region,
with δφ ∼ Hi/2π. Now in the region where φ = φend−δφ inflation will end a bit later, by an amount of time δt ' δφ/φ̇0.
The scale factor a during inflation is given approximately by a ∝ exp{Hi t} so that the region where inflation end later

will have expanded for an extra time δt and will be slightly larger, by a factor ' (1 +Hi δt) ' (1 +Hi δφ/φ̇0), than

our reference region. As a consequence energy density of radiation will be smaller, by a factor ' (1 +Hi δφ/φ̇0)−4.
We conclude therefore that quantum fluctuations during inflation generate fluctuations of the energy density in

matter at the end of inflation. This implies that the Universe at the end of inflation is now perfectly homogeneous,
but on the contrary has small inhomogeneities. These inhomogeneities, whose initial amplitude is of

δρ

ρ
' Hi

φ̇
δφ ' H2

i

2π φ̇
(35)

eventually evolve and grow during the subsequent expansion of the Universe, and give rise to the galaxies, clusters of
galaxies, stars and planets that now we inhabit.

An important property of these fluctuations, as we stated above, is that their spectrum is scale invariant. One can
check that structures we inhabit originate from a (quasi) scale invariant spectrum of perturbations by taking a picture
of the early Universe, that is by mapping the Cosmic Microwave Background radiation. This also allows to measure
the amplitude of the fluctuations δρ/ρ. Using eq. (35) above we obtain the relation

H2

2π φ̇
' 5× 10−5 (36)

where H and φ̇ have to be evaluated about 60 efoldings before the end of inflation. This relation allows to determine
a relation between the parameters in the inflationary potential.

2 Notice that since we are studying the amplitude of fields, and not probabilities, the observable we care about is the amplitude 〈...|...〉
rather than the probability |〈...|...〉|2.
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Figure 1: A schematic view of the Higgs potential (⇤ ⇠ 1010 GeV ⌧ MPl).

instability such that all the remaining regions would have the Higgs field around the origin in

field space. However, as shown in [13], those regions that survive (large–field) inflation would

only allow for small curvature perturbations and the probability of generating the right amount

of perturbations is exponentially small.

One may also declare that the Higgs field was prepared in a special state by unknown pre–

inflationary dynamics, but this simply begs the question. Possible thermal e↵ects would not do

the job since at large h the fields which couple to the Higgs are heavy and not expected to be

in thermal equilibrium.

It is worth noticing that the problem disappears altogether if one allows for physics beyond

the Standard Model. For example, a tiny coupling of the Higgs to the hidden sector can stabilize

the potential [14] and allow for “Higgs–portal” inflation [15]. We will however take a conservative

view and assume that the SM, with the addition of an inflaton, is valid up to the Planck scale.

The Higgs itself cannot play the role of an inflaton [16, 17, 18, 19] if the electroweak vacuum is

metastable and the extra degree of freedom is necessary.

In this work, we show that the above problems can be resolved if there is a Higgs–inflaton

coupling which drives the Higgs field to small values during inflation. Suppose the full scalar

potential is given by

V = VHiggs(h) + Vcross(h,�) + Vinfl(�) , (3)

where � is the inflaton. Then, the Higgs field evolves to the electroweak vacuum after inflation

3

FIG. 4: A schematic representation of the Higgs potential after taking into account loops from the top quark.

VII. INFLATION AND THE HIGGS

Let us conclude with a natural question: could the Higgs field be the inflaton? At large values of the Higgs field h
its potential is given by V (h) ' λ

4 h
4. This is a monomial potential that, as we have seen above, can satisfy the slow-

roll conditions if |h| � MP . Now how about the fluctuations? Let us just perform an order-of-magnitude estimate.

Observations give δρ/ρ ' 10−5. We have shown that δρ/ρ ' H2/φ̇. During slow-roll φ̇ ' (dV/dφ)/H, so that

δρ/ρ ' H3/(dV/dφ). Using again the slow-roll condition H '
√
λφ2/MP we eventually find δρ/ρ ' λ1/2 φ3/M3

P .

Since φ � MP , the obtain that λ � (δρ/ρ)
2 ' 10−10. Finally, since the mass of the Higgs is related to λ via

mH '
√
λ v with v ' 100 GeV, we obtain that for the Higgs to drive inflation we would need mH � 1 MeV, that

clearly is ruled out. Therefore the Standard Model Higgs cannot be the inflaton.
For the currently measured values of the mass of the Higgs and of the top quark it appears that the Higgs potential

V (h) turns negative at h = Λ ' 1012 GeV and is unbounded from below (see figure 4). Therefore if for some reason
|h| gets larger than Λ during or after inflation, then the Higgs will end in a vacuum different from ours, leading to a
Universe completely different from ours - possibly leading to a collapsing Universe that falls down an infinitely deep
vacuum with negative energy. An unpleasant outcome of inflation.

While classically one could just invoke the possibility that we started with |h| < Λ, quantum mechanically we must
take into account the fluctuations of the Higgs field. Based on the discussion above, these fluctuations are generated
with a typical amplitude 〈δh2〉 = (Hi/2π)2 per efolding of inflation. Therefore even if we start inflation with h = 0,
eventually the value of H will drift away. The exercise below will allow to make a quantitative statement on the mass
of the Higgs based on the requirement that inflation does not lead to the end of the world by bringing the Higgs to
its unstable region.
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EXERCISE

Chaotic inflation and the mass of the Higgs. The simplest model of inflation is known as chaotic inflation

and its potential has the form V (φ) = m2

2 φ2.
We will assume that this is the correct model of inflation, and we will infer a constraint on the mass of the Higgs

by assuming that quantum fluctuations during inflation do not bring the Higgs field to the region where its potential
is negative.

To do this:

1. Compute the mass m of the inflaton: assuming that inflation ended at φ = MP , use the slow-roll approximation
to compute the value of φ 60 efoldings before the end of inflation. Use this result to compute the mass of the
inflaton after imposing

δρ

ρ
=

H2

2π φ̇
= 5× 10−5 . (37)

2. As seen above, the variance
√
〈h2〉 of a test field h and the end of inflation is given by

〈h(x, τend))|h(x, τend))〉 =

∫ aend

ain

dk

k

(
Hi

2π

)2

, (38)

From this you can compute, as a function of Λ, the probability that the Higgs field (assumed to be a massless
field, that is most probably a good approximation in this context) takes a expectation value between −Λ and
Λ. Compute the value of Λ95, defined as the value of Λ for which there is 95% probability that the Higgs is in
the region −Λ95 < h < Λ95, assuming 〈h〉 = 0.

3. The one-loop corrected Higgs potential reads approximately

V (h) ' λ

4

(
h2 − v2

)2 − 3

8π2
y4t h

4 log
h

v
, (39)

where v = 246 GeV and yt is the top quark Yukawa coupling. It is clear that for large values of h the potential
turns negative. Estimate, as a function of the mass of the Higgs mh in the electroweak vacuum the critical value
hc of h where this happens.

[Neglect, for simplicity, the correction from the top quark to the Higgs potential in the calculation of mh].

4. From the above expression of Λ95 derive a bound of the mass of the Higgs by requiring that hc < Λ95. That is,
that inflation had only 5% probability to bring the Higgs into the unstable region.

5. Compare your result with the observed mass of the Higgs. Is there a contradiction? If yes, how would try to
change things to obtain an agreement between the measured mass of the Higgs and the theoretical bound from
vacuum stability during inflation?
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SOLUTION

1. Slow roll approximation gives

Ne =
1

M2
P

∫ φ

MP

V (φ′)

V ′(φ′)
dφ′ =

1

4M2
P

(
φ2 −M2

P

)
, (40)

so that

φ = 2MP

√
1

4
+Ne ' 15.5MP (41)

where in the last equality we have used Ne = 60.

Now in slow roll approximation |φ̇| = |V ′(φ)/3H, so that

5× 10−5 =
δρ

ρ
=

H2

2π φ̇
' 3H3

2π V ′
=

1

4π
√

6

mφ2

M3
P

(42)

where we have used H ' mφ/
√

6MP from the slow relations. From this equation we obtain, using the result (41)

above, m = π
√
6

1/4+Ne
× 5× 10−5MP ' 1.5× 1013 GeV.

2. In first approximation, one can just assume Hi 'constant during inflation, as set it equal to its value at 60

efoldings before the end of inflation. In this case the integral is simply
∫Hi aend
H ain

dk
k = log(aendain

) = Ne = 60.

Taking H computed for the value of phi given in eq. (41) we obtain

〈h2〉 ' Ne
4π2

m2

6
(1 + 4Ne) '

(
1.2× 1014 GeV

)2
. (43)

A more accurate estimate can be obtained by using dk/k = dNe and H2(Ne) = m2

6 (1 + 4Ne) so that

〈h2〉 ' m2

24π2

∫ Ne

0

dN ′e (1 + 4N ′e) =
m2

24π2

(
Ne + 2N2

e

)
'
(
8.5× 1013 GeV

)2
. (44)

Then Λ95 corresponds to a 2σ value, that is Λ95 = 1.7× 1014 GeV.

3. The mass of the Higgs in vacuum is given by m2
H = 2λ v2 ' (126 GeV)2 with v = 246 GeV. We also have that

the top Yukawa is yt = mt/v with mt ' 173 GeV.

For h� v, when the log becomes important, we can approximate the potential by keeping only the terms in h4

and h4 log h. Then the potential turns negative for λ
4 − 3

8π2 y
4
t

, log h
v = 0 that is

hc = v exp

{
2π2

3

λ

y4t

}
= v exp

{
π2

3

m2
H v

2

m4
t

}
(45)

4. By requiring stability, that is hc > Λ95 we obtain

mH >

√
3

π

m2
t

v

√
log

Λ95

v
' 350 GeV . (46)

5. The Higgs being much lighter that ∼ 250 GeV implies that: either the model of inflation is not given by the
m2

2 φ
2 potential, or that the potential of the Higgs is not simply given by eq. (39). It is easy to modify the latter

hypothesis as discussed in the main text, by assuming for instance a sizable direct coupling |h|2 φ2 that gives a
large mass to the Higgs during inflation. In this case the analysis of fluctuations of a field during inflation, that
hold for a massless field, do not apply any more and the LHC can agree with chaotic inflation.


