Part III Prospects for Higgs studies in future colliders

LEP3

LHC

Gent

FRANKREICH

Genfersee

Cli

FCC

M.Bachtis (CERN-PH)

IL KENTELE

Introduction

- In the previous lectures we described
 - How the Higgs couplings are measured
 - How the Higgs couplings can reveal hints for new physics
- In this lecture
 - What is the ultimate precision we can get with the LHC
 - Proton vs e⁺e⁻ collisions?
 - How we study the Higgs in e⁺e⁻ collisions?
 - What are the prospects for future colliders

Couplings measurements @ LHC

For a production X and decay Y

$$\mu = \frac{\kappa_X^2 \kappa_Y^2}{\frac{\sum_l \kappa_l^2 BR(H \to ll)}{1 - BR(H \to BSM)}}$$

- Caveats
 - The total width cannot be measured
 - e.g, no access to H → cc/mumu
 - Many model assumptions
 - Theoretical systematics

Width from off-shell $H \rightarrow ZZ^*$

- New technique in the market
 - Look at off-shell Higgs events and estimate the width
- Already 200% precision achieved with current data

Theoretical systematics will limit it when statistics Increase but maybe a 30% uncertainty is possible

Theoretical systematics

- In hadron collisions all calculations are involving loops in QCD
 - Very difficult and large systematic error due to the QCD scale
 - PDFs also contribute large errors
- In gluon fusion process @ 125 GeV
 - Uncertainty due to the QCD scale: 7%
 - Uncertainty due to the PDF : 7%
- Numbers correlated between experiments
 - Limits the maximum precision !!

Where will LHC next runs takes us?

- Currently we have 25fb⁻¹
- With 1000fb⁻¹,couplings at 5 % level
- Probably will not be able to measure the self coupling
 - via ggH \rightarrow HH
- Projections assuming that theoretical systematics improve

Coupling	LHC (1 ab-1)
κW	3-5%
κZ	3-5%
кү	3-5%
кg	4-6%
кb	6-10%
ĸt	4-6%
κμ	~17%
κΖγ	~22%
кt	10-12%
κН	?

What about HL-LHC?

- Accelerator and Experiments preparing proposal for high luminosity LHC
- Making possible to get 3x more luminosity
- Much larger pileup(140 events in the detector)!
 - Experiments need to be upgraded to cope with the new conditions

LHC upgrade stages

-The HL-LHC project is actively a new machine.

-The upgrade cost per experiment approaches 30% of the experiment construction cost

Higgs @ HL-LHC

Coupling	LHC (1 ab-1) HL-LHC	
κW	3-5%	2-5%
κZ	3-5%	2-4%
кү	3-5%	2-5%
κg	4-6 %	3-5%
κb	6-10 %	4-7%
ĸt	4-6 %	2-5%
κμ	~17%	~10%
κΖγ	~22%	~12%
кt	10-12%	7-10%
κН	?	30-50% ?

Typical deviations for new physics:

$$\Delta \frac{g}{g_{SM}} < 5\% \left(\frac{1TeV}{\Lambda}\right)^2$$

For a 5sigma deviation, <1% precision needed

HL-LHC probably cannot provide such precision

Remember \rightarrow It is not only the Higgs!

- In case we can produce new physics at LHC energies, we might be able to see it with large luminosity
- One example is the Tevatron
 - Designed to discover the top quark
 - However with 5x more data, Tevatron would have an observation of the Higgs
 - If the LHC was not there to discover it first
- The next LHC run will give us a better clue on what to expect

The quest for precision: e⁺e⁻

- Lepton colliders are ideal for precision measurements
- The center of mass energy is known !
- No problems with high pileup!
- No PDFs since we collide leptons
- No high order QCD calculations for the theorists!

The quest for precision: e⁺e⁻

As clean as it can be.....

Higgs production @ e⁺e⁻

The magic of e⁺e⁻ collisions

- Calculation of the missing mass in ZH
 - Working group exercise yesterday!
- Reconstructing a Z pair and knowing the CM energy we can reconstruct the missing Higgs mass

• Without requiring any Higgs decay mode

Direct search for invisible decays

- Use ZH mode and reconstruct the missing higgs mass
- Then require that there is nothing else in the detector $ZH \rightarrow I+I- + nothing, 0.5 ab-1$

How do we measure the width in e⁺e⁻

- With the missing mass technique we can measure directly just the cross section $\sigma(ZH) \approx \kappa_Z^2$
- Then by measuring the H \rightarrow ZZ decay via e.g ZH \rightarrow ZZZ $\sigma(ZH) \times BR(H \rightarrow ZZ) \approx \frac{\kappa_Z^4}{\Gamma/\Gamma_{SM}}$
- Combining the above equations we measure directly the Higgs width
- One can combine the WWH production with H $\,\rightarrow\,$ WW for improved sensitivity

Probing the WWH mode

- Measuring the missing mass in the bbvv final state
- Background from ZH (H \rightarrow bb / Z $\rightarrow \nu\nu$)

Do we need circular or linear?

High energy e⁺e⁻ machines

- LEP: largest e⁺e⁻ circular collider so far
 - 26.7 km circumference
 - Energy of 88-209 GeV
 - 4 detectors [ALEPH, DELPHI, L3, OPAL]
 - 20M Z decays and 40000 WW events

High energy e⁺e⁻ machines

- SLC: largest linear collider
 - 2 miles long
 - CM energy of 91 GeV
 - Polarized electron beam
 - 1 detector
 - 400000 Z events

Vanda 6/2298

LEP and SLC performance

- LEP exceeded all expectations doing 3x better than expected
- SLC achieved about 50% of the design specifications
- In general linear colliders \rightarrow more difficult machines
 - Does not have to be the same next time around

Why linear?

- Energy loss by synchrotron radiation
 - In circular machines
- Energy loss grows per turn
 - 3.5 GeV /turn @ LEP2

Future proposed machines

The International Linear Collider(ILC)

- Maximum energy: 500 GeV
 - Possible upgrade to 1 TeV
- R&D for the last 20 years
- Technical Design report ready
- Detector designs well underway
- Japan as a possible host

Main Linac

FCC- e⁺e⁻

- Formerly known as TLEP
- First proposal in 2012 -conceptual report by 2018
- Circular collider in 100km tunnel , maximum CM energy 350 GeV
- Tunnel can then be used to host a 100 TeV proton machine
 - FCC-pp
- CERN as possible host?

How high CM energy is achieved

- ILC uses long set of RF cavities
 - Since beams are lost after collisions
 - The RF system needs to provide the full beam energy
 O(8km)
- In FCC-ee , beams circulate many times
 - For hours
 - Less RF needed → just compensate synchrotron radiation loss
 - O(800m)

How luminosity is achieved

How luminosity is achieved(circular)

Beam sizes can be conservative

How luminosity is achieved (linear)

Collateral effect for FCC-ee

- Beam lifetime [15 mins]
- Due to Bhabba scattering ($e^+e^- \rightarrow e^+e^-$)
 - Burns the beam!
- Solution known from B-factories
 - Top up injection \rightarrow use 2 rings!
 - Has to be demonstrated

Collateral effect for ILC

Bremsstrahlung

- Radiation in the field of the opposing beam
- Degrades beam energy profile
- Adds additional event content (ala PU) in the detector

FCC-ee vs ILC luminosity

- FCC-ee could host up to 4 detectors (if budget allows)
 - Luminosity increasing as energy drops (more bunches)
- ILC larger energy range
 - Luminosity increases with energy (smaller transverse size of beam)

	ILC-250	FCC-ee-240	ILC-350	FCC-ee-350
Lumi / IP / year	50 fb ⁻¹	500 fb ⁻¹	70 fb ⁻¹	130 fb ⁻¹
Lumi / 5 yrs	250 fb ⁻¹	10 ab -1	350 fb ⁻¹	2.6 ab ⁻¹
# of HZ events	70,000	2,000,000	65,000	325,000
# of WW \rightarrow H events	1,500	50,000	12,000	65,000

Luminosity expressed in Higgs results

4IPs for FCC -ee

Coupling	HL-LHC	ILC	FCC-ee	Model-independent results	
κW	2-5%	1.2%	0.19%		
κZ	2-4%	1.0%	0.15%		
кb	4-7%	1.7%	0.42%	Sensitive to new physics at tree level	
кС	-	2.8%	0.71%		
κτ	2-5%	2.4%	0.54%		
κμ	~10%	91%	6.2%		
κγ	2-5%	8.4%	1.5%	Τ'	
к g	3-5%	2.3%	0.8%	Sensitive to new physics in loops	
κΖγ	~12%	?	?		
BRinvis	~10-15% ?	< 0.9%	< 0.19%	Sensitive to light dark matter	
ГН	~50%?	5.0%	1.0%		
кt	7-10%	14%	-	Need higher energy to improve on LHC	
κН	30-50% ?	80%	-		

Some conclusions(I)

- ILC can provide energies up to 1 TeV [with upgrade]
 - The precision on the Higgs couplings is \sim x2 better than HL-LHC
 - However many measurements not within a 1% bound for requirements to probe indirectly new physics
 - ILC can probe the top coupling @ 15% level and can look at Higgs self coupling however not with a good accuracy
 - Seems HL-LHC would do better on those
- For all this to be achieved it has to operate with much better success than SLC and reach the design goals
 - Many technical challenges to be addressed but the proposal is at good state

Some conclusions (II)

- A circular machine would provide ultimate precision in Higgs couplings measurement
 - Achieving well below 1% for all measurements + width
 - And huge luminosity for Z and top studies
 - The threshold is not enough to probe directly the top coupling or the Higgs self coupling
 - It can probe them via indirect measurements
- The technical challenges are not as many as in the case of ILC due to the long experience with LEP and B-factories
 - However still challenges remain and solutions need to be demonstrated

Some conclusions (III)

- If we look further than the Higgs ILC energy could be used to discover new particles [I.e SUSY] produced in pairs [up to 500 GeV]
 - However LHC @ 14 TeV would already discover them
 - In the case of discovery of new physics @ LHC a high energy proton machine or a very high energy linear collider (O(3 TeV)) ala CLIC would become interesting
- The FCC-ee could be the first step step to a 100 TeV proton machine
 - Repeating the success story LEP-LHC
 - Able to discover new physics at the next scale
 - And measure with ultimate precision the remaining Higgs properties (I.e self coupling)
- In any case we should evaluate the results from the next LHC run to decide!