Quantum transport in nanoscale solids The Landauer approach

Dietmar Weinmann

Institut de Physique et Chimie des Matériaux de Strasbourg

Quantum effects in electron transport

R. A. Webb, S. Washburn, Physics Today, Dec. 1988

Quantum effects in electron transport

Quantum conductance, Landauer's approach

Basic concepts

Quantum versus classical behavior

microscopic	macroscopic
atoms, molecules	large pieces of matter
quantum	classical

Quantum versus classical behavior

microscopic	macroscopic
atoms, molecules	large pieces of matter
quantum	classical

intermediate: Nanoscale systems

Quantum versus classical behavior

microscopic	macroscopic	
atoms, molecules	large pieces of matter	
quantum	Classical	
intermediate:		
Nanoscale systems		
quantum effects and	large number of atoms	
quantum and statistical physics		
"mesoscopic regime" [B. Reulet, friday]		

Quantum behavior

isolated system A:

$$i\hbar \frac{\partial}{\partial t} |\psi_{A}(t)\rangle = H_{A} |\psi_{A}(t)\rangle$$

Quantum behavior

isolated system A:

$$i\hbar \frac{\partial}{\partial t} |\psi_{\rm A}(t)\rangle = H_{\rm A} |\psi_{\rm A}(t)\rangle$$

time evolution

$$|\psi_{\rm A}(t)\rangle = \exp(-iH_{\rm A}t/\hbar)|\psi_{\rm A}(0)\rangle$$

Quantum behavior

isolated system A:

$$i\hbar \frac{\partial}{\partial t} |\psi_{\rm A}(t)\rangle = H_{\rm A} |\psi_{\rm A}(t)\rangle$$

time evolution

$$|\psi_{\rm A}(t)\rangle = \exp(-iH_{\rm A}t/\hbar)|\psi_{\rm A}(0)\rangle$$

How can classical behavior emerge?

Coupling to an environment

realistic, A coupled to environment E:

combined system $H = H_A + H_E + H_{AE}$

$$|\psi(t)\rangle = \exp(-iHt/\hbar)|\psi(0)\rangle$$

Coupling to an environment

realistic, A coupled to environment E:

combined system $H = H_A + H_E + H_{AE}$

$$|\psi(t)\rangle = \exp(-iHt/\hbar)|\psi(0)\rangle$$

Do we have $|\psi_{A}(t)\rangle = \exp(-iH_{A}t/\hbar)|\psi_{A}(0)\rangle$?

Coupling to an environment

realistic, A coupled to environment E:

combined system $H = H_A + H_E + H_{AE}$

$$|\psi(t)\rangle = \exp(-iHt/\hbar)|\psi(0)\rangle$$

Do we have $|\psi_{A}(t)\rangle = \exp(-iH_{A}t/\hbar)|\psi_{A}(0)\rangle$?

Coupling leads to decoherence on a timescale τ_{ϕ}

Phase coherence time/length

Quantum effects are suppressed due to decoherence \rightsquigarrow phase coherence time τ_{ϕ}

Electrons move \Rightarrow phase coherence length L_{ϕ}

Phase coherence time/length

Quantum effects are suppressed due to decoherence \rightsquigarrow phase coherence time τ_{ϕ}

Electrons move \Rightarrow phase coherence length L_{ϕ}

ballistic motion ($v_{\rm F}$ Fermi velocity): $L_{\phi} = v_{\rm F} \tau_{\phi}$

diffusive motion (D diffusion constant): $L_{\phi} = \sqrt{D\tau_{\phi}}$

Quantum effects are suppressed due to decoherence \rightsquigarrow phase coherence time τ_{ϕ}

Electrons move \Rightarrow phase coherence length L_{ϕ}

ballistic motion ($v_{\rm F}$ Fermi velocity): $L_{\phi} = v_{\rm F} \tau_{\phi}$ diffusive motion (*D* diffusion constant): $L_{\phi} = \sqrt{D\tau_{\phi}}$

Quantum effects relevant when:

$$L_{\phi} \gtrsim L$$

(L: size of the sample or other relevant length scale)

Phase coherence time

Spin coherence

Spin is often weakly coupled to other degrees of freedom

Spin coherence

Spin is often weakly coupled to other degrees of freedom

 \rightsquigarrow Spin coherence time $\tau_{\phi,S} \gg \tau_{\phi,O}$

Example: $\tau_{\phi,\mathrm{S}} > 100\,\mathrm{ns}$ in GaAs (Kikkawa&Awschalom, PRL '98)

 \Rightarrow Quantum computing, Spin electronics, ...

[Coupling to mechanical degrees of freedom: R. Leturq, thursday]

Quantum conductance Landauer's approach

Conductance quantization

Point contact

D. A. Wharam et al. J. Phys. C **21**, L209 (1988)

B. J. van Wees et al.Phys. Rev. Lett. 60, 848 (1988)

www.ilorentz.org

Conductance quantization

Point contact

D. A. Wharam et al. J. Phys. C **21**, L209 (1988)

B. J. van Wees et al.Phys. Rev. Lett. 60, 848 (1988)

www.ilorentz.org

steps of $2e^2/h$ in the conductance!

Conductance and conductivity

Ohm's law

conductance I = GVsample global

conductivity $\vec{j} = \sigma \vec{E}$ material local

Conductance and conductivity

conductivity $\vec{j} = \sigma \vec{E}$ material local

classical:

$$G = \sigma \frac{A}{L}$$

Scaling of the conductance

Non-locality of quantum transport

R. A. Webb, S. Washburn, Physics Today, Dec. 1988

Non-locality of quantum transport

R. A. Webb, S. Washburn, Physics Today, Dec. 1988

quantum transport is non-local \downarrow

↓ Conductance has to be considered

Electrons in a perfect 1d wire

1d wavefunctions

 $\psi_k(x) \propto \exp\left(ikx\right)$

k > 0: forward propagation with $\hbar v = \partial E / \partial k$ Current carried by a state: $I_k = ev/L$

Electrons in a perfect 1d wire

1d wavefunctions

 $\psi_k(x) \propto \exp\left(ikx\right)$

k > 0: forward propagation with $\hbar v = \partial E / \partial k$

Current carried by a state: $I_k = ev/L$

Density of states: $\rho_+ = L/hv$ Total current carried by k > 0 states:

$$I_{+} = \int_{0}^{\infty} \mathrm{d}E f_{\mu_{1}} I_{k} \rho_{+}$$

Electrons in a perfect 1d wire

1d wavefunctions

 $\psi_k(x) \propto \exp\left(ikx\right)$

k > 0: forward propagation with $\hbar v = \partial E / \partial k$

Current carried by a state: $I_k = ev/L$

Density of states: $\rho_+ = L/hv$ Total current carried by k > 0 states:

$$I_{+} = \int_{0}^{\infty} \mathrm{d}E f_{\mu_{1}} I_{k} \rho_{+} = \frac{e}{h} \int_{0}^{\infty} \mathrm{d}E f_{\mu_{1}}$$

$$\stackrel{\mu_1}{\longleftarrow} \stackrel{L}{\longrightarrow} \stackrel{\mu_2}{\longrightarrow} I_+ = \frac{e}{h} \int_0^\infty dE f_{\mu_1} \quad I_- = -\frac{e}{h} \int_0^\infty dE f_{\mu_2}$$

$$\stackrel{\mu_1}{\longleftarrow} \stackrel{L}{\longrightarrow} \stackrel{\mu_2}{\longrightarrow} I_+ = \frac{e}{h} \int_0^\infty dE f_{\mu_1} \quad I_- = -\frac{e}{h} \int_0^\infty dE f_{\mu_2}$$

Net current:

$$I = I_{+} + I_{-} = \frac{e}{h} \int_{0}^{\infty} dE \left(f_{\mu_{1}} - f_{\mu_{2}} \right)$$

$$\stackrel{\mu_1}{\longleftarrow} \stackrel{L}{\longrightarrow} \stackrel{\mu_2}{\longrightarrow} I_+ = \frac{e}{h} \int_0^\infty dE f_{\mu_1} \quad I_- = -\frac{e}{h} \int_0^\infty dE f_{\mu_2}$$

Net current:

$$I = I_{+} + I_{-} = \frac{e}{h} \int_{0}^{\infty} dE \left(f_{\mu_{1}} - f_{\mu_{2}} \right)$$

Low temperature $f_{\mu} \rightarrow \Theta(\mu - E)$:

Landauer: Conductance from scattering

Landauer: Conductance from scattering

$$I = TI_1 - TI_2 = \frac{e}{h}T\underbrace{(\mu_1 - \mu_2)}_{eV}$$

Landauer: Conductance from scattering

$$I = TI_1 - TI_2 = \frac{e}{h}T\underbrace{(\mu_1 - \mu_2)}_{eV}$$

→ two terminal conductance

$$G_{2t} = \frac{e^2}{h}T$$

finite for T = 1!

Four terminal conductance

[H.-L. Engquist, P. W. Anderson, Phys. Rev. B 24, 1151 (1981)]

Four terminal conductance

difference between two and four terminal resistance: contact resistance

$$\left(\frac{1}{G_{2t}} - \frac{1}{G_{4t}}\right) = \frac{h}{e^2} \left(\frac{1}{T} - \frac{1-T}{T}\right) = \frac{h}{e^2}$$

difference between two and four terminal resistance: contact resistance

$$\left(\frac{1}{G_{2t}} - \frac{1}{G_{4t}}\right) = \frac{h}{e^2} \left(\frac{1}{T} - \frac{1-T}{T}\right) = \frac{h}{e^2}$$

equilibration in the reservoirs leads to dissipation

Electrons in a quasi-1d clean quantum wire

$$H = -\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) + V(y)$$

Electrons in a quasi-1d clean quantum wire

$$H = -\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) + V(y)$$

separable! $H = H_x + H_y$
 $\rightsquigarrow \quad \psi(x, y) \propto \chi_n(y) \exp(ikx)$
 $E_{n,k} = E_n + \frac{\hbar^2 k^2}{2m}$

Electrons in a quasi-1d clean quantum wire

$$H = -\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) + V(y)$$

separable! $H = H_x + H_y$
 $\rightsquigarrow \quad \psi(x, y) \propto \chi_n(y) \exp(ikx)$

$$E_{n,k} = E_n + \frac{\hbar^2 k^2}{2m}$$

"conduction channels" conductance per open channel:

Conductance of a many-channel scatterer

Generalization of the 2-terminal conductance:

$$G_{2t} = \frac{e^2}{h} \sum_{n,m} T_{n,m}$$
$$n \rightarrow T_{n,m} \rightarrow m$$

sum runs over occupied channels $E_n, E_m < E_F$

Conductance of a many-channel scatterer

Generalization of the 2-terminal conductance:

$$G_{2t} = \frac{e^2}{h} \sum_{n,m} T_{n,m}$$

$$m \rightarrow T_{n,m} \rightarrow m$$

sum runs over occupied channels $E_n, E_m < E_F$

Generalizations to

finite voltage, temperature \rightarrow textbooks

Conductance of a many-channel scatterer

Generalization of the 2-terminal conductance:

$$G_{2t} = \frac{e^2}{h} \sum_{n,m} T_{n,m}$$

$$m \rightarrow T_{n,m} \rightarrow m$$

sum runs over occupied channels $E_n, E_m < E_F$

Generalizations to

finite voltage, temperature \rightarrow textbooks interactions: Peter Schmitteckert, wednesday

Conductance quantization

Point contacts:

$$T_{n,m} \approx \delta_{n,m}$$

$$\rightarrow G_{2t} \approx \frac{e^2}{h} N_c$$

 N_c : # of occupied channels

van Wees *et al.* Phys. Rev. Lett '88

www.ilorentz.org

Summary

Quantum transport:

- quantum effects: low temperatures; small lengthscales relevant in nanoscale systems

Summary

Quantum transport:

- quantum effects: low temperatures; small lengthscales
 relevant in nanoscale systems
- Landauer formalism:

Quantum conductance \leftrightarrow transmission

strong magnetic field, clean sample:

cyclotron orbits $r_c = m v_{\rm F}/eB$; $\omega_c = eB/m$

strong magnetic field, clean sample:

cyclotron orbits $r_c = m v_F / eB$; $\omega_c = eB/m$

Quantum mechanics ($L_{\phi} > r_c$): quantized motion \rightarrow Landau levels $E = E_0 + (n + 1/2)\hbar\omega_c$

strong magnetic field, clean sample:

cyclotron orbits $r_c = mv_F/eB$; $\omega_c = eB/m$

Quantum mechanics ($L_{\phi} > r_c$):

quantized motion \rightarrow Landau levels $E = E_0 + (n + 1/2)\hbar\omega_c$

DOS
$$-\hbar\omega_c$$
 - E

degenerate
$$N_D = 2SB/\phi_0$$

v. Klitzing *et al.* Phys. Rev. Lett. '80

more recent measurement from www.ptb.de

v. Klitzing *et al.* Phys. Rev. Lett. '80

 $E_{\rm F}$ between Landau levels:

more recent measurement from www.ptb.de

v. Klitzing *et al.* Phys. Rev. Lett. '80

 $E_{\rm F}$ between Landau levels:

 $R_H = \frac{h}{e^2} \frac{1}{n}$ quantized!

more recent measurement from www.ptb.de

Application: Resistance standard

Edge channels

2d, strong magnetic field

"skipping orbits" \rightarrow edge channels (1 per Landau level)

 $T_{n,m} = \delta_{n,m}$

spatial separation of forward and backward channels

$$I = 2\frac{e^2}{h}N_{\rm LL}\frac{\mu_1 - \mu_2}{e}$$
$$V_x = V_A - V_B = 0$$
$$\rightarrow R_x = V_x/I = 0$$

 $T_{n,m} = \delta_{n,m}$

spatial separation of forward and backward channels

spatial separation of forward and backward channels

$$I = 2\frac{e^2}{h}N_{\rm LL}\frac{\mu_1 - \mu_2}{e}$$
$$V_x = V_A - V_B = 0$$
$$\rightarrow R_x = V_x/I = 0$$

$$V_H = V_A - V_C = (\mu_1 - \mu_2)/e$$

 $\rightarrow R_H = V_H/I = \frac{h}{2e^2} \frac{1}{N_{\rm LL}}$