Magnetism in ultrathin films

W. Weber IPCMS Strasbourg

Orbital and Spin moment

Intuitive : Orbital moment

Mysterious : Spin moment

$$m_{orb} = I \cdot F = \left(-q \frac{\omega}{2\pi}\right)(\pi r^2) = -\frac{q}{2m}(mr^2\omega)$$
$$= -\frac{q}{2m}L = -\frac{q}{2m}\hbar l = -\frac{q\hbar}{2m}l$$

 $m_{orb} = -g_l \mu_B l$ with $g_l = 1$

Angular spin momentum : $\hbar s$

$$m_{spin} = -g_s \mu_B s$$
 with $g_s = 2$

Ferromagnetic behavior: magnetization *without* an external magnetic field at non-zero temperatures possible

How can we explain magnetic order up to temperatures of 1000 K?

Early explanation (1907): Weiss' molecular field

A molecular field exists within the ferromagnet which orders the moments against the thermal motion. It is so large that the ferromagnet can be saturated even without an external magnetic field.

Order of magnitude:

 $k_{R}T_{c} \approx \mu_{0}\mu_{R}H_{m}$ $T_c = 1000 \,\mathrm{K}$ \longrightarrow $H_m \approx 10^9 \,\mathrm{A/m}$

What is the physical interaction responsible for it?

Dipole-dipole interaction?

$$E_{dip} = \frac{1}{r^3} \overrightarrow{m_1} \cdot \overrightarrow{m_2} - \frac{3}{r^5} \left(\overrightarrow{m_1} \cdot \overrightarrow{r} \right) \left(\overrightarrow{m_2} \cdot \overrightarrow{r} \right)$$

Strength
$$\frac{\mu_0 {\mu_B}^2}{a^3} \approx 1 \,\mathrm{K}$$
 Too weak!

Interplay of Pauli principle and Coulomb interaction

Two electrons of opposite spin can share the same orbital and come close

Two electrons of same spin cannot \Rightarrow farther apart \Rightarrow Lower Coulomb energy

This interaction does not act like a real magnetic field

Exchange interaction in a solid

$$H = -J\sum_{i\neq j}\vec{S}_i\cdot\vec{S}_j$$

J positive : parallel orientation (ferromagnetic) J negative : anti-parallel orientation (anti-ferromagnetic)

The strength of the interaction depends on the orbital overlap between neighbouring atoms \Rightarrow decreases exponentially with distance

Indirect exchange coupling in multilayers

FM1

Indirect exchange coupling

Unguris et al., Phys.Rev. B 49, 14 (1994)

Indirect exchange coupling in multilayers

Amplitude of the coupling strength decreases with thickness

Parkin et al., Phys.Rev. B 44, 7131 (1991)

Indirect exchange coupling

<u>RKKY interaction</u> (Ruderman, Kittel, Kasuya, Yosida).

$$J = \frac{1}{R^2} \sin(2k_F R)$$

Giant magnetoresistance

Baibich et al., PRL 61,2472 (1988)

Spinfilter effect

Paramagnet

Spinfilter effect

Ferromagnet

Giant magnetoresistance

Giant magnetoresistance

Spintronics: Applications

Spintronics explores new avenues for

- Information reading
 - GMR, TMR sensors
- Information reading & storage
 MRAM chips

 Information reading & storage & writing magnetization switching by spin-currents

 Information reading & storage & writing & processing spins & transistors & semiconductors

GMR read head

Spin-resolved photoemission spectroscopy on MnPc/Co(001): spin-polarized interface states

$$TMR = \frac{2P_{Co}P_{LSMO}}{1 - P_{Co}P_{LSMO}}$$

The polarisation depends on the interface !!

De Teresa et al., Science 286 (1999)

Mn(II)-phthalocyanine : $Mn-C_{32}H_{16}N_8$

Advantage:

large spin diffusion length expected due to weak spin-orbit coupling in low-Z materials.

Photoemission spectroscopy

Difference spectra

Difference spectra

Difference spectra

first layer second layer third layer

Difference spectra

contribution of the different Pc layers to the interface states

Polarization of difference spectra

Character of interface states

Determination of the character by exploiting the variation of the cross section with photon energy. By going from 20 to 100 eV the cross sections change by the following factors:

Co 3d: 1.4 Mn 3d: 0.7 C 2p: 1/40 N 2p: 1/20

Character of interface states

C. Barraud et al., Nature Phys. (2010)

C. Barraud et al., Nature Phys. (2010)

Electron spin motion: a new tool to study ferromagnetic films

Experiment

Spin-dependent band gaps and their influence on the electron-spin motion

Typical electronic band structure

Experimental results

Spin-dependent band gaps and their influence on the electron-spin motion

Fabry-Pérot experiments with spin-polarized electrons

Experimental results and simulations

Joly et al., PRL 97, 187404 (2006), Joly et al., PRB 76, 104415 (2007)

Joly et al., PRL 97, 187404 (2006), Joly et al., PRB 76, 104415 (2007)

Spin-dependent band gaps and their influence on the electron-spin motion

Fabry-Pérot experiments with spin-polarized electrons

Morphology-induced oscillations of the electronspin precession

Fe/Ag(001)

Tati Bismaths et al., PRB 77, 220405(R) (2008)

A/B without relaxation at the islands edges

A/B with relaxation at the islands edges

Spin-dependent band gaps and their influence on the electron-spin motion

Fabry-Pérot experiments with spin-polarized electrons

Morphology-induced oscillations of the electronspin precession

Influence of sub-monolayer MgO coverages on the spin-dependent reflection properties of Fe

MgO-induced perpendicular relaxation of the Fe surface

H.L. Meyerheim et al., Phys. Rev. B 65, 144433 (2002)

MgO-induced normal relaxation of the Fe surface

H.L. Meyerheim et al., Phys. Rev. B 65, 144433 (2002)

MgO-induced normal relaxation of the Fe surface

H.L. Meyerheim et al., Phys. Rev. B 65, 144433 (2002)

Ab initio calculations

Ab initio calculations based on linear muffin-tin orbital method (LMTO) and the Korringa-Kohn-Rostoker (KKR) method.

- 9 ML Fe

- First interlayer distance is relaxed without actually putting MgO on top of Fe

T. Berdot et al., PRB 82, 172407 (2010)

Spin-dependent band gaps and their influence on the electron-spin motion

Fabry-Pérot experiments with spin-polarized electrons

Influence of lattice relaxation on the spin precession in Fe/Ag (001) Morphology-induced oscillations of the electronspin precession

Influence of sub-monolayer MgO coverages on the spin-dependent reflection properties of Fe

A. Hallal et al., PRL 107, 087203 (2011)

A. Hallal et al., PRL 107, 087203 (2011)

Ramsauer-Townsend effect

Resonance condition weak scattering

on-resonance scattering phase is zero

off-resonance \implies scattering phase is non-zero

Spin-dependent band gaps and their influence on the electron-spin motion

Organic molecules on ferromagnetic surfaces

Fabry-Pérot experiments with spin-polarized electrons

Influence of lattice relaxation on the spin precession in Fe/Ag (001) Morphology-induced oscillations of the electronspin precession

Influence of sub-monolayer MgO coverages on the spin-dependent reflection properties of Fe

GaAs : Source of polarized electrons

