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Transport: DC conductance

* STATIC response to a DC voltage
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• Measure of the dissipation
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Setup: DC Current source + voltmeter or DC voltage source + ampmeter
OR: low frequency (Hz-kHz) source + lock-in amplifier

CONTACTS (2 or 4)



Transport: AC conductance
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It is a COMPLEX quantity.

* Real part (in-phase response): dissipation
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* LINEAR, DYNAMICAL response to an oscillating field

* Imaginary part (response in quadrature): reaction, i.e. delay
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INTERESTING WHEN:



Summary
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DC characteristics

AC conductance

Non-linear AC transport (mixing, 
rectification)



Fluctuations (noise)
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Record current vs. Time and calculate the variance



Example: the tunnel junction
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V = 0

eV >> kBT

L. Spietz, Yale Univ.



Statistics of the Current in a  
tunnel junction

Each time  :
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Current fluctuations in a  tunnel 
junction at low frequency
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Equilibrium (Johnson) 
noise: macroscopic, 
fluctuation-dissipation 
theorem

Shot noise: discreteness of 
charge

Noise spectral density in A2/Hz

B=bandwidth



Experiment (ω=0,T=4.2K)
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Transport in mesoscopic systems
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-The electrons cross the sample with a certain 
probability p≠0,1
- The incoming stream of electrons has thermal 
fluctuations
So the current fluctuates !



The scattering approach: waves
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Incoming waves are partially reflected and 
transmitted



The scattering (Landauer) formalism
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The quantum current operator
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For ω=0, r and t energy independent, with p = |t|2 = 1-|r|2 :
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Dc current:

Büttiker-Landauer formula



Zero frequency noise
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First term: proportionnal to p2 x TEMPERATURE

Second term: proportionnal to p(1-p) x VOLTAGE for eV>>kBT

For a review: Blanter & Büttiker, Phys. Rep. 336 (00)



Example: tunnel junction
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Full shot noise
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Example: QPC, p tunable
For eV>>kT, S2=FeI, with F the Fano factor

Reznikov et al., PRL (95)



Example: diffusive wire, p 
distributed

But: what if electrons interact 
(hot electrons regime) ?

T0 T0

Te(x)



Elastic transport vs. hot 
electrons: effect of length & T

Henny et al. PRB (99)

COLDHOT COLD



From meso- to macroscopic: 
electron-phonon interaction

TGkS B22 

Electrons are heated up by Joule effect and cooled down by 
emission of phonons: T≠Tph
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Noise is suppressed by inelastic 
scattering (e-phonon)

Steinbach et al., PRL (96)

I2/5



Shot noise measure the charge 
of the carriers

Examples:
- Normal metal / Superconductor interface: q=2e
- Fractionnal Quantum Hall Effect: q=e/3



Effects of quantum coherence 
(i.e., of the phase of the 

wavefunctions ) ?

- Quantum corrections to S2: small (weak localization, Aharonov-
Bohm effect), never measured

- Andreev interferometer: effective charge depends on magnetic
flux

- Two-particles Aharonov-Bohm effect: noise depends on 
magnetic flux whereas conductance does not

The phase of the wavefunctions can be modified with the help of a 
small magnetic field or flux (in a ring).



Example: Andreev Interferometer

Theory

Experiment

BR et al., PRL90 (03)



Noise at finite frequency ?
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tItIVCCorrelation function:

Noise spectral density:

Time average
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Quantum mechanics: 
ordering of operators?
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Noise S2: Absorption

Emission
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Zero point fluctuations
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S2 in the quantum regime ħω>kBT,eV

eV=ħω

Tunnel junction R=50Ω
No photon emitted:
Zero point fluctuations

Tphonons= 22 mK
Telectrons= 27 mK

f = 5.5 - 6.5 GHz
hf/kB = 290 mK
Ghf/e = 0.50μA

It is not possible to 
separate the noise 
of the amplifier from
the ZPF !

V(t)
band pass
 J. Gabelli & BR, (10)

First observation:
R. Schoelkopf et al. PRL78 (97)



Photo-assisted noise: S2() in the 
presence of AC excitation at freq. 0
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The energy levels of the 
reservoir follow
adiabatically the voltage 
(Tien-Gordon)

For a dc voltage, this is equivalent to a shift of the Fermi level

tVVtV acdc 0cos)( 



Photo-assisted noise: S2() in the 
presence of AC excitation at freq. 0

0
aceVz 

J. Gabelli & BR, PRL100 (08): ~0
First observation:
R. Schoelkopf et al. PRL80 (98) 0

« Kinks » for 

give access to the 
effective charge (no 
calibration necessary)

0  neVdc 

=5.5-6.5 GHz

For a diffusive wire, importance of the 
diffusion time



Summary
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? NOISE DYNAMICS

Photo-assisted
noise



Noise susceptibility – How fast can 
one modulate noise ?
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Noise susceptibility – the case of a 
macroscopic conductor

Fluctuation-dissipation theorem, at 
equilibrium and low frequency ħω<<kBT : TGkS B42 

NOISE = electron THERMOMETER
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Its frequency dependence gives  ENERGY 
RELAXATION (i.e. INELASTIC) time



Noise susceptibility – from 
macro- to mesoscopic 

conductor

* long wire or SNS: phonon cooling
The noise suceptibility  gives the ELECTRON-PHONON time
* intermediate wire: diffusion cooling
The noise suceptibility gives the DIFFUSION time
* short wire: elastic transport (independent electrons)
The noise suceptibility gives the ELECTRON-ELECTRON time
* ballistic wire (nanotube), quasi-crystals (sub-diffusive), … ??

L

diffusive metallic wire: length L >> mean free path

DDL 2
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 hot electrons
 independent electrons

The noise susceptibility of a 
diffusive wire

BR & D. Prober, PRL95 (05)

No calibration 
needed !

Measures the thermalization (inelastic) time.
Reminder: S2() indep. of  for a diffusive wire



Noise susceptibility – beyond the 
classical regime: theory

What if ω0> ω ?
What if ħω>kBT ? 

)()()( 00
  II

Calculation:
* Landauer-Büttiker formalism
* SYMMETRIZATION of the operators and 
The symmetrization rule depends on the 
experimental setup !

 

In particular: ω~ω0 )0()()( II  

Measures correlation between currents at different frequencies.
This correlation is induced by the excitation.



Noise susceptibility – the quantum 
regime: experiment

ω0~ ω~ 6 GHz
ħω/kBT~8.5
δω~100 MHz

low frequency current

high frequency 
current shifted to 
low freq.
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Noise susceptibility – the quantum 
regime: experiment

ω0~ ω~ 6 GHz
T=35 mK
ħω/kBT~8.5

)(

)(0 

dV
dS )(2 

J. Gabelli & BR, PRL100 (08)



What else ?

)(VI

0

0





V
I





)()(  II

0
V


  

)'()'()(  III

10

2

 VV 


10

10

2





VV
I


 

0

)(2




V

S



THIRD CUMULANT



The third cumulant of noise
)'()'()()',(3   IIIS

At low frequency: S3 = SKEWNESS of the probability distribution of 
current fluctuations P(I): zero for gaussian noise
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Statistics of the current

<I3> ?

equilibrium:
V=0, <I>=0
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<I>=GV
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At equilibrium: Johnson noise: <I2>=4kBTGB, (B=bandwidth)



Classical result: S3(0,0) for 
a tunnel junction

IeS 2
3 )0,0( 

Independent of temperature ! (between RT and 20 mK)

J. Gabelli & BR, (10)
First observation:
BR et al. PRL91 (03)



S3 in other systems : a diffusive wire 
in the hot electrons regime

T0 T0

Te(x)

A cascade mechanism (thermal feedback) is
responsible for S3:

TIStTtPtI Joule   3)()()(
K. Nagaev, PRB66 (02) 



S3 at finite frequency ?

S3 shows a frequency dependence at the 
scale of the inverse diffusion time, whereas S2
does not because of screening.
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S. Pilgram et al., PRB70 (04) 



Quantum regime: what is measured 
vs. what is calculated

Real instrument: number 

Quantum mechanics: Operator

What about correlations at different times ?
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In principle, one cannot measure current
fluctuations with an ampmeter !



The third cumulant S3 
at finite frequency ?

)()()(),( 2121213   IIIS

Measures phase correlations at 3 different frequencies !

* Classical result: in a Dirac peak, all the Fourier components are IN PHASE

* Quantum regime: correlations involving zero point fluctuations ?

)()()0(),0(3   IIISWe have measured:

low freq. current
fluctuations ZPF



S3 and Q mechanics: ordering ???
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The result depends on ORDERING:
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Keldysh ordering

Fully symmetrized

At finite frequency, Keldysh ordering, for a tunnel junction:

IeS 2
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Independent of frequency !!

Galaktionov, Golubev & Zaikin, PRB68 (03)
Salo, Hekking & Pekola, PRB74 (06)
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Environmental effects

R

I(t)

R0

V0 i(t)i0(t)

V(t)

The probability distribution P(i) depends on V(t)
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Feedback and noise of 
the environment

Noise of the environment: Tenv
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Feedback (even for Tenv=0)

Beenakker
Kindermann
Nazarov
PRL90 (03)

Noise
susceptibility

* The noise of the sample is modulated by external voltage fluctuations:

* The noise of the sample is modulated by its own current fluctuations 
through the external impedance:



Environmental contributions
at zero frequency
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Sample A
R=50 
T=4.2K
R0=42 
T0=7 K

BR et al. PRL91 (03)



Experimental setup for S3(0,)

Diplexer, 
not 
splitter

High frequency environment: 50 Ω
at the sample’s temperature

Low 
frequency 
current 
fluctuations

Zero point fluctuations of 
the sample amplified

Environmental effects: only the low freq. 
environmental noise temp. is not well known.

0 – 1 GHz 4 – 8 GHz
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Third cumulant of VOLTAGE

eV=ħω

T = 27 mK
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Correlation
between ZPF 
and low freq. 
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J. Gabelli & BR, unpublished



Environmental contributions vs. T

 eV

One unknown parameter: the effective noise temperature of the LF amplifier



Another way to measure S3(0,f) ?
S2(0)

low pass

V(t) S3(0,f)

S2
em(f)

band pass
f

Photo-multiplier: absorbs photons

Gives zero for eV<hf: another ordering of the operators ?



Third cumulant of CURRENT
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with linear amp.
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photo-detector
(expected)



Summary (final)
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Fluctuation-dissipation theorem
Environmental effect



Anything else ?
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DC I(V) Noise S2() 3rd moment
S3(, ’)

4th cumulant
C4(, ’, ’’)

Conductanc
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G()

Noise 
suceptibility ? ?

Photo-voltaic
effect, 
mixing

Photo-
assisted

noise
0

Photo-
assisted C4: 
see poster 

J.C. Forgues

? ? Photo-
assisted S3

?





Conclusion

There is plenty of work to 
do for interested students !!


