iemn Institut d'Electronique, de Microélectronique et de Nanotechnologie

Coupling of electronic and mechanical degrees of freedom in quantum nanostructures

Renaud Leturcq IEMN – CNRS, Villeneuve d'Ascq, France

Iniversité e Valenciennes du Hainaut-Cambrésis

Summary

- Part 1: Electronic transport in quantum nanostructures
 - Quantum effects can be observed on electronic transport for a sufficiently small size and at low temperature!
 - In these conditions, electronic properties of small nanostructures ressemble those of artificial atomes or molecules (quantum dots)

Electronic spectroscopy in quantum dots

quantum dots <=> artificial atoms or molecules

ique, de Microélectronique et de Nanotechnologie

MR CNRS 8520

Electronic spectroscopy in quantum dots

quantum dots <=> artificial atoms or molecules

ique, de Microélectronique et de Nanotechnologie

MR CNRS 8520

Summary

- Part 1: Electronic transport in quantum nanostructures
 - Quantum effects on electronic transport: or a sufficiently small size and at low temperature!
 - In these conditions, electronic properties of small nanostructures ressemble those of artificial atomes or molecules
- Part 2: Coupling of electrical and mechanical degrees of freedom
 - Real molecules have a vibrational spectrum... what about artifical atoms/molecules?
 - Can one observe quantum effects on the mechanical degree of freedom of nanostructures?

Outline

- Part 1: Electronic transport in quantum nanostructures
- Part 2: Coupling of electrical an mechanical degrees of freedom
 - Energy and length scales of a mechanical system
 - Fabrication of nanoelectromechanical systems (NEMS)
 - Exemple: Vibrational spectroscopy of suspended quantum dots

Energy and length scales of a mechanical system

Energy scale of a vibrating structure

- Vibrating mode fundamental frequency: f_m
 - flexural mode of a cantilever of length *I*, width *w*, thickness *t*, mass density *ρ* and Young's modulus *E*

$$f_m = 0.56 \frac{t}{l^2} \sqrt{\frac{E}{12\rho}}$$

- Si cantilever ($E = 1.5 \ 10^{11} \ \text{N.m}^2$, $\rho = 2.33 \ 10^3 \ \text{kg.m}^3$) $I = 1 \ \text{um}, t = 0.1 \ \text{um} \Rightarrow f_m = 130 \ \text{MHz}$
- Rule for observing quantum behavior: $hf_{m} > k_{B}T$
 - Si cantilever (see above) \Rightarrow T < 6 mK
 - more favorable in strong and light materials

Length scale of a vibrating structure

• Zero-point displacement uncertainty in the fundamental mode, Δx_{zp}

$$\Delta x_{ZP} = \sqrt{\frac{\hbar}{2 m_{eff} \omega_m}}$$

− Si cantilever (see above) $\Rightarrow \Delta x_{ZP} \approx 10^{-3} \text{ Å}$

- Detection of very small displacements possible in nanostructures
 - optical methods (interferometry)
 - electrical methods (capacitive, inductive, magnetic field, etc...)
 - indirect method: coupling of electronic and mechanical degree of freedom

Fabrication of suspended nanostructures

 Most commonly used for MEMS and NEMS: etching of a sacrificial layer

Fabrication of suspended nanostructures

 Most commonly used for MEMS and NEMS: etching of a sacrificial layer

JMR CNRS 8520

Fabrication of suspended nanostructures

Doubly clamped SiN beam

M. D. Lahaye et al., Science 304, 74 (2004)

 suspended quantum dot in a GaAs/GaAlAs heterostructure

E. M. Weig et al., Phys Rev. Lett. 92, 046804 (2004)

Combined bottom-up and top-down approaches

- CNT growth
- Cr/Au evaporation

C. Stampfer et al.

Combined bottom-up and top-down approaches

- CNT growth
- Cr/Au evaporation
- HF under-etching

C. Stampfer *et al.*

Vibrational spectroscopy of quantum dots

Vibrational excited states in a molecular quantum dot

- Contacted fullerene molecule
 - caracteristic energy scale much lower than the expected electronic excited states ⇒ attributed to vibration modes

H. Park et al., Nature 407, 57 (2000)

see also: L. H. Yu *et al.*, Phys. Rev. Lett. **93**, 266802 (2004) A. N. Pasupathy *et al.*, Nano Lett. **5**, 203 (2005)

Drain

Gate

Vibrational excited states in a carbon nanotube quantum dot

• Suspended carbon nanotube quantum dot

S. Sapmaz et al., Phys. Rev. Lett. 96, 026801 (2006)

Origin of the vibration in a carbon nanotube

- Radial breathing modes (RBM) $\Delta Evib = 14 \text{ meV}$ for r = 1 nm
- Bending modes Δ Evib = 0.4 µeV for r = 1 nm and L = 600 nm
- Stretching modes (confined phonons)

$$\Delta E_{vib} = \hbar v_{ph} q \text{ with } q = \frac{n\pi}{L}$$

$$v_{ph} = 2.4 \times 10^4 \text{ m/s} \Rightarrow \text{Evib} = n \text{ 0.09 meV for L} = 600 \text{ nm}$$

- squash-ball modes (optical)
- twisting modes (weakly coupled to electron tunneling)

Vibrational excited states in a carbon nanotube quantum dot

• Energy scale rather corresponds to stretching modes

Signatures of phonon confinement in a nanowire double quantum dot

de Microélectronique et de Nanotechnologie

- Nanowire laying over finger gates: double quantum dot formed by using 5 gates
- Energy scale corresponds to phonons confined in the lateral direction

Observation of vibrational excited states

- Observation of vibrational excited states in suspended quantum dots
 - the main argument is the energy scale
- Can we proove further that these excited states are of vibrational origin?

Sample

C. Stampfer et al.

Coulomb diamonds

T = 1.3 K

stitut d'Electronique, de Microélectronique et de Nanotechnologie R CNRS 8520

Coulomb diamonds

- Quadri-periodic addition energy ⇒ four-fold degeneracy
 - spin degeneracy
 - orbital degeneracy in CNT

Excited states

Evidence of vibronic excited states: temperature dependence

• Vibron-assisted tunneling at higher temperature

Evidence of vibronic excited states: temperature dependence

Vibron-assisted tunneling at higher temperature

iemn Institut d'Electronique, de Microélectro-sique et de Nangtechnologie MRNS Ezeturcq, C. Stampfer *et al.*, Nature Phys. **5**, 327 (2009)

Evidence of vibronic excited states: temperature dependence

Vibron-assisted tunneling at higher temperature

 dI_{SD}/dV_{SD} (µs)

1

.0

Vibrational spectrum of molecules

- Vibronic transitions: Franck-Condon principle
 - J. Franck, Trans. Faraday Soc. 21, 536 (1926); E. Condon, Phys. Rev. 28, 1182 (1928)
 - suppression of the vibrational ground-state to ground-state transition for strong electron-vibron coupling

 Franck-Condon principle ⇒ suppression of the current at zero bias voltage = "Franck-Condon blockade"

J. Koch & F. von Oppen, Phys. Rev. Lett. 94, 206804 (2005)

 Franck-Condon principle ⇒ suppression of the current at zero bias voltage = "Franck-Condon blockade"

J. Koch & F. von Oppen, Phys. Rev. Lett. 94, 206804 (2005)

 Franck-Condon principle ⇒ suppression of the current at zero bias voltage = "Franck-Condon blockade"

J. Koch & F. von Oppen, Phys. Rev. Lett. 94, 206804 (2005)

E. M. Weig et al., Phys. Rev. Lett. 92, 046804 (2004)

 Franck-Condon principle ⇒ suppression of the current at zero bias voltage = "Franck-Condon blockade"

J. Koch & F. von Oppen, Phys. Rev. Lett. 94, 206804 (2005)

Franck-Condon blockade

• Suppression of the current at zero bias voltage

Franck-Condon blockade

• Suppression of the current at zero bias voltage

Franck-Condon factors:

$$\left(\frac{dI_{SD}}{dV_{SD}}\right)_{n}^{max} \propto |M_{0\to n}|^{2} \propto \frac{e^{-g} g^{n}}{n!}$$

electron-vibron coupling parameter:

g = 3 - 5 > 1

R. Leturcq, C. Stampfer et al., Nature Phys. 5, 327 (2009)

Summary

- Part 1: Electronic transport in quantum nanostructures
 - Quantum effects on electronic transport: for a sufficiently small size and at low temperature!
 - In these conditions, electronic properties of small nanostructures ressemble those of artificial atomes or molecules
- Part 2: Coupling of electrical and mechanical degrees of freedom
 - Suspended nanotructures show a vibrational spectrum similar to the one of molecules (as far as for Franck-Condon effect)
 - Observation of the electron-phonon coupling at the single particle level
 - Further reading: control of single phonons in a mechanical resonator [O'Connell *et al.*, Nature **464**, 697 (2010)]

