iemn Institut d'Electronique, de Microélectronique et de Nanotechnologie

Coupling of electronic and mechanical degrees of freedom in quantum nanostructures

Renaud Leturcq IEMN – CNRS, Villeneuve d'Ascq, France

niversité valenciennes du Hainaut-Cambrésis

RENATECH

Introduction

- From the electronic structure of atoms to the vibrational spectrum of molecules
 - coupling of electronic and vibrational degree of freedom ⇒ Raman spectroscopy

Emission and Absorption Spectra for Hydrogen

http://dosxx.colorado.edu/~bagenal/1010/SESSIONS/13.Light.html

Introduction

- From the electronic structure of atoms to the vibrational spectrum of molecules
- Actual nanostructures closer to single molecules ⇒ do they show similar behavior?
 - e.g. carbon nanotubes

S. Sapmaz et al., Nano Lett. 6, 1350 (2006)

Introduction

- Electronic transport
 - resistance (conductance)
 of a conductor
- Electrons are quantum particles
 - How quantum mechanics influences electronic transport?
 - What is a nanostructure in terms of quantum transport?
- Motion of the atoms of the conductor
 - microscopically: electron-phonon coupling
 - nanostructures: nanoelectromechanical systems (NEMS)
 - New behavior in quantum nanostructures?

Outline

- part 1: electronic transport in quantum nanostructures
 - length and energy scales of quantum electronic transport
 - Coulomb blockade and quantum dots
 - fabrication of nanostructures and measurement techniques
- part 2: coupling of electronic and mechanical degrees of freedom

Length and energy scales of quantum electronic transport

Lengths scales for electronic transport

- Classical transport (Drude)
 - electron = particle (wave packet)
 - independent scattering (incoherent)
 - no interactions

$$j = \sigma E$$
$$\sigma = \frac{n e^2 \tau_{tr}}{m}$$

Lengths scales for electronic transport

- Fermi wave length $\lambda_{_{\rm F}}$
 - only electrons at E_{F} participate to the transport
- Mean free path $\boldsymbol{\ell}_{\boldsymbol{\rho}}$
 - mean distance between two scattering events

ł,

- Phase coherent length ℓ_{d}
 - memory of the phase
- Classical limit:

 $-\lambda_{\mu} < \ell_{e}$ and $\ell_{h} < \ell_{e}$

Energy scales

- Level spacing $\Delta = E_{i+1} E_i$
 - energy quantization
- Charging energy e^2/C
 - effect of electron-electron interactions
- Thermal energy $k_{\rm B}T$
 - energy averaging
 - decoherence (phonons, electron-electron interactions)

Length and energy scales in nanostructures

Quantum confinement

- Size of the system *L*
- $L \sim \lambda_{F} \Rightarrow$ quantum confinement (conductance quantization, nanophysics)
 - density of states in confined systems:

Ballistic transport

- Size of the system *L*
- $L < \ell_e \Rightarrow$ ballistic transport

H. van Houten *et al.*, in Physics and Technology of Submicron Structures (Springer, Berlin, 1988)

Coherent transport

- Size of the system L
- $L < \ell_{g} \Rightarrow$ interferences between electron wave functions (mesoscopic transport)

⊁

Coulomb blockade and quantum dots

Coulomb blockade: the single electron transistor

 $-Ne=Q_g+Q_L+Q_R$ $C = C_L + C_R + C_g$ $V_{g} = \frac{Q_{L}}{C_{L}} - \frac{Q_{g}}{C_{g}} = \frac{Q_{R}}{C_{R}} - \frac{Q_{g}}{C_{g}}$ $E_{ch}(N, V_g) = \frac{Q_L^2}{2C_L} + \frac{Q_R^2}{2C_R} + \frac{Q_g^2}{2C_g}$ $\approx \frac{\left(Ne - C_g V_g\right)^2}{2C}$

Coulomb blockade: the single electron transistor E_{ch} gate $\Gamma_{\rm s}$ $\Gamma_{\rm d}$ dot source drain *N* = 1 ΔE_c *N* = 2 $N \neq 0$ Ν tunnel barriers 3 $C_{\rm I}$ 2 $C_{\rm R}$ Ν 1 $C_{\rm g}$ $V_{_{\rm g}}$ emr 2 0 1 $C_a V_a /$ le/ Institut d'Electronique, de Microélectronique et de Nanotechnologie UMR CNRS 8520

Confinement energy: the quantum dot

 Non-interacting particles: interference between reflected electron paths (Fabry-Perot) ⇒ discrete spectrum

Quantum dot = tunable artificial atom

• From the single electron transistor to the quantum dot

$$E_{ch}(N) \approx \left(N + \frac{1}{2}\right) E_{C}$$
$$E_{C} = \frac{e^{2}}{C} \approx \frac{e^{2}}{\varepsilon_{0} \varepsilon_{r} L}$$

 $\varepsilon_r = 1 \Rightarrow E_c \approx 200 \text{ meV pour } L = 100 \text{ nm}$ ($\varepsilon_r < 1$ in usual semiconductors)

$$\Delta \approx \frac{\pi^2 \hbar^2}{m L^2}$$

 $m = 9,1 \times 10^{-31} \text{ kg}$ $\Rightarrow \Delta \approx 75 \ \mu\text{eV} \text{ for } L = 100 \ \text{nm}$ $(m_{\rho}^{*} < m_{\rho} \text{ in usual semiconductors})$

Electronic transport through a quantum dot

• Spectroscopy of electronic states

Electronic transport through a quantum dot

• Spectroscopy of electronic states

 $k_B T \ll \Delta < E_C$

Quantum dot = tunable artificial atom

L.P. Kouwenhoven, D.G.Austin & S. Tarucha Rep. Prog. Phys **64**, 701 (2001)

• Charge stability diagram

• Charge stability diagram (SET)

• Charge stability diagram (QD)

• Spectroscopy of excited states

experiment

Multiple quantum dots = artificial molecules

• Double quantum dot

Molecular states in a double quantum dot

•

Weak coupling

Strong coupling: bonding and antibonding states Ε 2† detuning

Fabrication of nanostructures and measurement techniques

Fabrication of nanostructures: top-down vs. bottom-up approaches

Top-down

etched silicon nanowire (35 nm width)

MBE-grown InAs nanowires (40 nm diameter)

P. Caroff (IEMN)

Fabrication of nanostructures: top-down vs. bottom-up approaches

- Top-down
 - easy integration
 - large variety of shapes
 BUT
 - defects due to the lithography process
 - sequential process (electron beam lihography)

- Bottom-up
 - defect free
 - highly parallel
 - often low cost
 - BUT
 - difficult integration
 - shapes defined by the process

often combine both!

Top-down approaches

• Litography (opitcal or electron beam)

Structure defined by etching

H. Linke et al., Phys. Rev. B 51, 15914 (2000)

Top-down approaches

• Litography (opitcal or electron beam)

Structure defined by metal evaporation

Bottom-up approaches

• Semiconductor nanowires

P. Caroff (IEMN)

Bottom-up approaches

- Molecular electronics
 - carbon nanotubes
 - single molecules

J. Park et al., Nature 417, 722 (2002)

Quantum dots for electrical transport

Quantum dots for electronic transport

- Schottky contacts on a nanomaterial
 - easy to make
 - average tunability

- self-assembled quantum dot

C. Buizert et al., PRL 99, 136806 (2007)

 semiconductor nanowires and carbon nanotubes

Quantum dots for electronic transport

- Heterostructure
 - high reproducibility
 - controlled size
 - low tunability

longitudinal heterostructures in nanowires

M. Björk et al., Nano Lett. 4, 1621 (2004)

Quantum dots for electronic transport

- Local etching
 - very versatile
 - average tunability

- local etching of a nanowire

I. Shorubalko et al., Nano Lett. 8, 382 (2008)

Quantum dots for electronic transport - from planar heterostructures

- Local depletion
 - high complexity
 - high tunability

200 nm

- or nanowires

Contacts to the macroscopic world

Low temperature measurement

Low temperature measurement

Summary

- Part 1: Electronic transport in quantum nanostructures
 - Quantum effects can be observed on electronic transport for a sufficiently small size and at low temperature.
 - Electronic properties of small nanostructures (quantum dots) ressemble those of artificial atomes (or molecules)

