### The Standard Model of particle physics and beyond.

### Benjamin Fuks & Michel Rausch de Traubenberg

IPHC Strasbourg / University of Strasbourg. benjamin.fuks@iphc.cnrs.fr & michel.rausch@iphc.cnrs.fr Slides available on http://www.cern.ch/fuks/esc.php

6-13 July 2011

## Outline.



### Context.



Special relativity and gauge theories.

- Action and symmetries.
- Poincaré and Lorentz algebras and their representations.
- Relativistic wave equations.
- Gauge symmetries Yang-Mills theories symmetry breaking.



Construction of the Standard Model.

- Quantum Electrodynamics (QED).
- Scattering theory Calculation of a squared matrix element.
- Weak interactions
- The electroweak theory.
- Quantum Chromodynamics.



Beyond the Standard Model of particle physics.

- The Standard Model: advantages and open questions.
- Grand unified theories
- Supersymmetry.
- Extra-dimensional theories
- String theory.



## Building blocks describing matter.





- Neutrons.
- Protons
- Electrons.



- Proton and neutron compositness.
  - Naively: up and down quarks.
  - In reality: dynamical objects made of
    - Valence and sea quarks.
    - Gluons [see below...].



- Beta decays.
  - $n \rightarrow p + e^- + \bar{\nu}_e$ .
    - Needs for a neutrino.

## Three families of fermionic particles [Why three?].

#### Quarks:

| Family                     | Up-type quark           | Down-type quark |
|----------------------------|-------------------------|-----------------|
| 1 <sup>st</sup> generation | up quark <mark>u</mark> | down quark d    |
| 2 <sup>nd</sup> generation | charm quark c           | strange quark s |
| 3 <sup>rd</sup> generation | top quark <b>t</b>      | bottom quark b  |

#### Leptons:

| Family                     | Charged lepton | Neutrino                            |
|----------------------------|----------------|-------------------------------------|
| 1 <sup>st</sup> generation | electron e     | electron neutrino $ u_{\mathbf{e}}$ |
| 2 <sup>nd</sup> generation | muon $\mu^-$   | muon neutrino $ u_{\mu}$            |
| 3 <sup>rd</sup> generation | tau $	au^-$    | tau neutrino $ u_{	au}$             |

- In addition, the associated antiparticles.
- The only difference between generations lies in the (increasing) mass.
- Experimental status [Particle Data Group Review].
  - All these particules have been observed.
  - Last ones: top quark (1995) and tau neutrino (2001).

## Fundamental interactions and gauge bosons.

### Electromagnetism.

- \* Interactions between charged particles (quarks and charged leptons).
- \* Mediated by massless photons  $\gamma$  (spin one).

#### Weak interaction.

- \* Interactions between the left-handed components of the fermions.
- \* Mediated by massive weak bosons  $W^{\pm}$  and  $Z^{0}$  (spin one).
- \* Self interactions between  $W^{\pm}$  and  $Z^0$  bosons (and photons) [see below...].

#### Strong interactions.

- \* Interactions between **colored particles** (quarks).
- \* Mediated by massless gluons g (spin one).
- \* Self interactions between gluons [see below...].
- \* Hadrons and mesons are made of guarks and gluons.
- \* At the nucleus level: binding of protons and neutrons.

#### Gravity

- \* Interactions between all particules.
- \* Mediated by the (non-observed) massless graviton (spin two).
- \* Not described by the Standard Model.
- \* Attempts: superstrings, M-theory, quantum loop gravity, ...

# The Standard Model of particle physics - framework (1).

- Symmetry principles 

  elementary particles and their interactions.
  - Compatible with special relativity.
    - $\diamond$  Minkowski spacetime with the metric  $\eta_{\mu\nu} = \text{diag}(1, -1, -1, -1)$ .
    - $\diamond$  Scalar product  $x \cdot y = x^{\mu} y_{\mu} = x^{\mu} y^{\nu} \eta_{\mu\nu} = x^0 y^0 \vec{x} \cdot \vec{y}$ .
    - ♦ Invariance of the speed of light c.
    - Physics independent of the inertial reference frame.
  - \* Compatible with quantum mechanics.
    - Classical fields: relativistic analogous of wave functions.
  - \* Quantum field theory.
    - Quantization of the fields: harmonic and fermionic oscillators.
  - Based on gauge theories [see below...].

#### Conventions.

- \*  $\hbar = c = 1$  and  $\eta_{\mu\nu}, \eta^{\mu\nu} = \text{diag}(1, -1, -1, -1).$
- \* Raising and lowering indices:  $V^{\mu} = \eta^{\mu\nu} V_{\nu}$  and  $V_{\mu} = \eta_{\mu\nu} V^{\nu}$ .
- \* Indices.
  - $\diamond$  Greek letters:  $\mu, \nu \dots = 0, 1, 2, 3$ .
  - $\diamond$  Roman letters:  $i, j, \ldots = 1, 2, 3$ .

- What is a symmetry?
  - \* A symmetry operation leaves the laws of physics invariant. e.g., Newton's law is the same in any inertial frame:  $\vec{F} = m \frac{d^2 \vec{x}}{dt^2}$ .
- Examples of symmetry.
  - \* Spacetime symmetries: rotations, Lorentz boosts, translations.
  - \* Internal symmetries: quantum mechanics:  $|\Psi\rangle \rightarrow e^{i\alpha}|\Psi\rangle$ .
- Nœther theroem.
  - \* To each symmetry is associated a conserved charge.
  - \* Examples: electric charge, energy, angular momentum, ...

## The Standard Model of particle physics - framework (3).

#### Dynamics is based on symmetry principles.

- \* Spacetime symmetries (Poincaré).
  Particle types: scalars, spinors, vectors, ...
  Beyond: supersymmetry, extra-dimensions.
- \* Internal symmetries (gauge interactions).
  Electromagnetism, weak and strong interactions.
  Beyond: Grand Unified Theories.
- Importance of symmetry breaking and anomalies [see below...].
  - \* Masses of the gauge bosons.
  - Generation of the fermion masses.
  - \* Quantum numbers of the particles.

### Outline.



Lontext



Special relativity and gauge theories.

- Action and symmetries.
- Poincaré and Lorentz algebras and their representations.
- Relativistic wave equations.
- Gauge symmetries Yang-Mills theories symmetry breaking.



Construction of the Standard Model.

- Quantum Electrodynamics (QED).
- Scattering theory Calculation of a squared matrix element.
- Weak interactions.
- The electroweak theory.
- Quantum Chromodynamics.



- Beyond the Standard Model of particle physics.
- The Standard Model: advantages and open questions.
- Grand unified theories.
- Supersymmetry.
- Extra-dimensional theories.
- String theory.
- Summary.

## Euler-Lagrange equations - theoretical concepts.

- We consider a set of fields  $\phi(x^{\mu})$ .
  - \* They depend on spacetime coordinates (relativistic).
- A system is described by a Lagrangian  $\mathcal{L}(\phi, \partial_{\mu}\phi)$  where  $\partial_{\mu}\phi = \frac{\partial \phi}{\partial \omega^{\mu}}$ .
  - **Variables**: the fields  $\phi$  and their first-order derivatives  $\partial_{\mu}\phi$ .
- Action
  - Related to the Lagrangian  $S = \int d^4x \mathcal{L}$ .
- Equations of motion.
  - \* Dynamics described by the principle of least action.
  - \* Leads to Euler-Lagrange equations:

$$rac{\partial \mathcal{L}}{\partial \phi} - \partial_{\mu} rac{\partial \mathcal{L}}{\partial \left(\partial_{\mu} \phi \right)} = 0$$
 where  $\phi$  and  $\partial_{\mu} \phi$  are taken independent.

## Euler-Lagrange equations - example.

- The electromagnetic potential  $A^{\mu}(x) = (V(t, \vec{x}), \vec{A}(t, \vec{x})).$
- External electromagnetic current:  $j^{\mu}(x) = (\rho(t, \vec{x}), \ \vec{\jmath}(t, \vec{x})).$
- The system is described by the Lagrangian  $\mathcal{L}$  (the action  $S = \int d^4x \ \mathcal{L}$ ).

$$\mathcal{L} = -\frac{1}{4}F^{\mu\nu}F_{\mu\nu} - A_{\mu}j^{\mu} \quad \text{with} \quad F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} = \begin{pmatrix} 0 & -E^{1} & -E^{2} & -E^{3} \\ E^{1} & 0 & -B^{3} & B^{2} \\ E^{2} & B^{3} & 0 & -B^{1} \\ E^{3} & -B^{2} & B^{1} & 0 \end{pmatrix}.$$

[Einstein conventions: repeated indices are summed.]

- **Equations** of motion.
  - The Euler-Lagrange equations are

$$\frac{\partial \mathcal{L}}{\partial A_{\mu}} - \partial_{\mu} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} A_{\nu})} = 0 \leadsto \partial_{\mu} F^{\mu\nu} = j^{\nu} \leadsto \left\{ \begin{array}{ccc} \vec{\nabla} \cdot \vec{E} & = & \rho \\ \vec{\nabla} \times \vec{B} & = & \vec{\jmath} + \frac{\partial \vec{E}}{\partial t} \end{array} \right..$$

\* The constraint equations come from

$$\partial_{\mu}F_{\nu\rho} + \partial_{\nu}F_{\rho\mu} + \partial_{\rho}F_{\mu\nu} = 0 \sim \left\{ egin{array}{ll} \vec{
abla} \cdot \vec{B} & = & 0 \\ \vec{
abla} \times \vec{E} & = & -rac{\partial \vec{B}}{\partial t} \end{array} 
ight. .$$

### • What is an invariant Lagrangian under a symmetry?.

\* We associate an operator (or matrix) G to the symmetry:

$$\phi(x) o G\phi(x)$$
 and  $\mathcal{L} o \mathcal{L} + \partial_{\mu}(\ldots)$  .

- \* The action is thus invariant.
- Symmetries in quantum mechanics.
  - \* Wigner: G is a (anti)-unitary operator.
  - \* For unitary operators,  $\exists g$ , hermitian, so that

$$G = \exp[ig] = \exp[i\alpha^i g_i]$$
.

- $\diamond \ \alpha^i$  are the transformation parameters.
- $\diamond$   $g_i$  are the symmetry generators.
- \* Example: rotations  $R(\vec{\alpha}) = \exp[-i\vec{\alpha} \cdot \vec{J}]$  ( $\vec{J} \equiv \text{angular momentum}$ ).
- Symmetry group and algebra.
  - \* The product of two symmetries is a symmetry  $\Rightarrow \{G_i\}$  form a group.
  - \* This implies that  $\{g_i\}$  form an algebra.

$$\left[g_i,g_j\right]\equiv g_ig_j-g_jg_i=if_{ij}{}^kg_k\ .$$

\* Rotations:  $[J_i, J_i] = iJ_k$  with (i, j, k) cyclic.

### Outline.



### Context.



#### Special relativity and gauge theories.

- Action and symmetries.
- Poincaré and Lorentz algebras and their representations.
- Relativistic wave equations.
- Gauge symmetries Yang-Mills theories symmetry breaking.



### Construction of the Standard Model.

- Quantum Electrodynamics (QED).
- Scattering theory Calculation of a squared matrix element.
- Weak interactions
- The electroweak theory.
- Quantum Chromodynamics.



### Beyond the Standard Model of particle physics.

- The Standard Model: advantages and open questions.
- Grand unified theories
- Supersymmetry.
- Extra-dimensional theories
- String theory.



## The Poincaré group and quantum field theory.

- Quantum mechanics is invariant under the Galileo group.
- Maxwell equations are invariant under the Poincaré group.

#### Consistency principles.

- Relativistic quantum mechanics. Relativistic equations (Klein-Gordon, Dirac, Maxwell, ...)
- **Quantum field theory** The field are quantized: second quantization. (harmonic and fermionic oscillators).

• The Poincaré algebra reads  $(\mu, \nu = 0, 1, 2, 3)$ 

$$\begin{split} \left[ L^{\mu\nu}, L^{\rho\sigma} \right] &= -i \Big( \eta^{\nu\sigma} L^{\rho\mu} - \eta^{\mu\sigma} L^{\rho\nu} + \eta^{\nu\rho} L^{\mu\sigma} - \eta^{\mu\rho} L^{\nu\sigma} \Big) \;, \\ \left[ L^{\mu\nu}, P^{\rho} \right] &= -i \Big( \eta^{\nu\rho} P^{\mu} - \eta^{\mu\rho} P^{\nu} \Big) \;, \\ \left[ P^{\mu}, P^{\nu} \right] &= 0 \;, \end{split}$$

where

- \*  $L_{\mu\nu} = -L_{\nu\mu}$  is antisymmetric..
- \*  $L_{ii} = J^k \equiv \text{rotations}; (i, j, k) \text{ is a cyclic permutation of } (1, 2, 3).$
- \*  $L_{0i} = K^i \equiv \text{boosts } (i = 1, 2, 3).$
- \*  $P_{\mu} \equiv$  spacetime translations.



Beware of the adopted conventions (especially in the literature).

- The particle masses.
  - A Casimir operator is an operator commuting with all generators.  $\sim$  quantum numbers.
  - \* The quadratic Casimir  $Q_2$  reads  $Q_2 = P^{\mu}P_{\mu} = E^2 \vec{p} \cdot \vec{p} = m^2$ .
  - \* The masses are the eigenvalues of the  $Q_2$  operator.

## Reminder: the rotation algebra and its representations.

The rotation algebra reads

$$\begin{bmatrix} J^i,J^j \end{bmatrix} = i\varepsilon^{ij}{}_k J^k = \begin{cases} & iJ_k & \text{with } (i,j,k) \text{ a cyclic permutation of } (1,2,3). \\ & -iJ_k & \text{with } (i,j,k) \text{ an anticyclic permutation of } (1,2,3). \end{cases}$$

- The operator  $\vec{J} \cdot \vec{J}$ .
  - \* Defining  $\vec{J} = (J^1, J^2, J^3)$ , we have  $[\vec{J} \cdot \vec{J}, J^i] = 0$ .
  - \*  $\vec{J} \cdot \vec{J}$  is thus a Casimir operator (commuting with all generators).
- Representations.
  - \* A representation is characterized by
    - $\diamond$  Two numbers:  $j \in \frac{1}{2}\mathbb{N}$  and  $m \in \{-j, -j+1, \dots, j-1, j\}$ .
  - \* The  $J^i$  matrices are  $(2i+1) \times (2i+1)$  matrices.
    - $\diamond$  j = 1/2: Pauli matrices (over two).
    - $\diamond$  j=1: usual rotation matrices (in three dimensions).
  - \* A state is represented by a ket  $|j, m\rangle$  such that

$$J_{\pm}|j,m\rangle = \sqrt{j(j+1) - m(m\pm 1)}|j,m\pm 1\rangle$$
,  
 $J^{3}|j,m\rangle = m|j,m\rangle$  and  $\vec{J}\cdot\vec{J}|j,m\rangle = j(j+1)|j,m\rangle$ .

## The Lorentz algebra and the particle spins.

The Lorentz algebra reads

$$\left[ L^{\mu\nu}, L^{\rho\sigma} \right] = -i \Big( \eta^{\nu\sigma} L^{\rho\mu} - \eta^{\mu\sigma} L^{\rho\nu} + \eta^{\nu\rho} L^{\mu\sigma} - \eta^{\mu\rho} L^{\nu\sigma} \Big) \; , \label{eq:Lindblad}$$

\* We define  $N^i = \frac{1}{2}(J^i + iK^i)$  and  $\bar{N}^i = \frac{1}{2}(J^i - iK^i)$ .

One gets 
$$\left[N^i,N^j\right]=-iN^k$$
 ,  $\left[\bar{N}^i,\bar{N}^j\right]=-i\bar{N}^k$  and  $\left[N^i,\bar{N}^j\right]=0$  .

$$\left[\bar{\mathsf{N}}^{\mathsf{i}},\bar{\mathsf{N}}^{\mathsf{j}}\right]=-\mathsf{i}\bar{\mathsf{N}}^{\mathsf{l}}$$

$$\left[ \mathbf{N^{i}},\mathbf{ar{N}^{j}}
ight] =\mathbf{0}$$

Definition of the spin.

$$\left\{ N_{i}\right\} \oplus \left\{ \bar{N}_{i}\right\} =\mathfrak{sl}(2) \oplus \overline{\mathfrak{sl}(2)} \sim \mathfrak{so}(3) \oplus \mathfrak{so}(3) \; .$$

The representations of  $\mathfrak{so}(3)$  are known:

$$\left\{ \begin{array}{l} \left\{\begin{matrix} N^i \\ \bar{N}^i \end{matrix}\right\} \xrightarrow{\mathcal{S}} \quad \Rightarrow J^i = N^i + \bar{N}^i \rightarrow \operatorname{spin} = S + \bar{S} \right. .$$

- The particle spins are the representations of the Lorentz algebra.
  - \*  $(0,0) \equiv \text{scalar fields}$ .
  - \* (1/2,0) and  $(0,1/2) \equiv \text{left and right spinors}$ .
  - \*  $(1/2, 1/2) \equiv \text{vector}$  fields.

# Representations of the Lorentz algebra (1).

- The (four-dimensional) vector representation (1/2, 1/2).
  - \* Action on four-vectors  $X^{\mu}$ .
  - \* Generators: a set of 10  $4 \times 4$  matrices

$$(J^{\mu\nu})^{\rho}{}_{\sigma} = -i \Big( \eta^{\rho\mu} \delta^{\nu}{}_{\sigma} - \eta^{\rho\nu} \delta^{\mu}{}_{\sigma} \Big) \ .$$

\* A finite Lorentz transformation is given by

$$\Lambda_{(\frac{1}{2},\frac{1}{2})} = \exp\left[\frac{i}{2}\omega_{\mu\nu}J^{\mu\nu}\right] \,,$$

where  $\omega_{\mu\nu}\in\mathbb{R}$  are the transformation parameters.

\* Example 1: a rotation with  $\alpha = \omega_{12} = -\omega_{21}$ ,

$$R(\alpha) = \exp\left[i\alpha J^{12}\right] = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\alpha & \sin\alpha & 0 \\ 0 & -\sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

\* Example 2: a boost of speed  $v=-\tanh \varphi$  with  $\varphi=\omega_{01}=-\omega_{10}$ ,

$$B(\varphi) = \exp \left[ i \varphi J^{01} \right] = \begin{pmatrix} \cosh \varphi & \sinh \varphi & 0 & 0 \\ \sinh \varphi & \cosh \varphi & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \gamma & -\beta \gamma & 0 & 0 \\ -\beta \gamma & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

# Representations of the Lorentz algebra (2).

- Pauli matrices in four dimensions
  - Conventions:

$$\sigma^0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \ , \quad \sigma^1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \ , \quad \sigma^2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \ , \quad \sigma^3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \ ,$$

Definitions:

$$\sigma^{\mu}{}_{\alpha\dot{\alpha}} = (\sigma^{0}, \sigma^{i})_{\alpha\dot{\alpha}}, \qquad \bar{\sigma}^{\mu\dot{\alpha}\alpha} = (\sigma^{0}, -\sigma^{i})^{\dot{\alpha}\alpha}$$

with  $\alpha = 1, 2$  and  $\dot{\alpha} = \dot{1}, \dot{2}$ .

The (un)dotted nature of the indices is related to Dirac spinors [see below...].



Beware of the position (lower or upper, first or second) of the indices. Beware of the types (undotted or dotted) of the indices.

# Representations of the Lorentz algebra (3).

- The left-handed Weyl spinor representation (1/2,0).
  - Action on complex left-handed spinors  $\psi_{\alpha}$  ( $\alpha = 1, 2$ ).
  - \* Generators: a set of 10 2 × 2 matrices

$$(\sigma^{\mu\nu})_{\alpha}{}^{\beta} = -\frac{i}{4}\Big(\sigma^{\mu}\bar{\sigma}^{\nu} - \sigma^{\nu}\bar{\sigma}^{\mu}\Big)_{\alpha}{}^{\beta} \ .$$

A finite Lorentz transformation is given by

$$\Lambda_{(rac{1}{2},0)} = \exp\left[rac{i}{2}\omega_{\mu
u}\sigma^{\mu
u}
ight]\,.$$

- The right-handed Weyl spinor representation (0, 1/2).
  - Action on complex right-handed spinors  $\bar{\chi}^{\dot{\alpha}}$  ( $\dot{\alpha} = \dot{1}, \dot{2}$ ).
  - \* Generators: a set of 10 2 × 2 matrices

$$(\bar{\sigma}^{\mu\nu})^{\dot{lpha}}_{\ \dot{eta}} = -rac{i}{4}\Big(\bar{\sigma}^{\mu}\sigma^{
u} - \bar{\sigma}^{
u}\sigma^{\mu}\Big)^{\dot{lpha}}_{\ \dot{eta}} \ .$$

A finite Lorentz transformation is given by

$$\Lambda_{(0,rac{1}{2})} = \exp\left[rac{i}{2}\omega_{\mu
u}ar{\sigma}^{\mu
u}
ight]\,.$$

Complex conjugation maps left-handed and right-handed spinors.

# Representations of the Lorentz algebra (4).

- Lowering and raising spin indices.
  - \* We can define a metric acting on spin space [Beware of the conventions],

$$\varepsilon_{\alpha\beta} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \qquad \text{and} \qquad \varepsilon^{\alpha\beta} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \;.$$

$$arepsilon_{\dot{lpha}\dot{eta}} = egin{pmatrix} 0 & 1 \ -1 & 0 \end{pmatrix} \qquad ext{and} \qquad arepsilon^{\dot{lpha}\dot{eta}} = egin{pmatrix} 0 & -1 \ 1 & 0 \end{pmatrix} \;.$$

\* One has:

$$\psi_{\alpha} = \varepsilon_{\alpha\beta} \psi^{\beta} \; , \qquad \psi^{\alpha} = \varepsilon^{\alpha\beta} \psi_{\beta} \; , \qquad \bar{\chi}_{\dot{\alpha}} = \varepsilon_{\dot{\alpha}\dot{\beta}} \bar{\chi}^{\dot{\beta}} \; , \qquad \bar{\chi}^{\dot{\alpha}} = \varepsilon^{\dot{\alpha}\dot{\beta}} \bar{\chi}_{\dot{\beta}} \; .$$



Beware of the adopted conventions for the position of the indices (we are summing on the second index).

$$\varepsilon^{\alpha\beta}\psi_{\beta} = -\varepsilon^{\beta\alpha}\psi_{\beta} \ .$$

# Four-component fermions: Dirac and Majorana spinors (1).

- Dirac matrices in four dimensions (in the chiral representation).
  - Definition:

$$\gamma^\mu = \begin{pmatrix} 0 & \sigma^\mu \\ \bar{\sigma}^\mu & 0 \end{pmatrix} \,.$$

The (Clifford) algebra satisfied by the  $\gamma$ -matrices reads

$$\{\gamma^{\mu}, \gamma^{\nu}\} = \gamma^{\mu}\gamma^{\nu} + \gamma^{\nu}\gamma^{\mu} = 2 \eta^{\mu\nu}$$
.

The chirality matrix, i.e., the fifth Dirac matrix is defined by

$$\gamma^{\bf 5}={\rm i}\gamma^{\bf 0}\gamma^{\bf 1}\gamma^2\gamma^{\bf 3}=\begin{pmatrix} -1 & 0\\ 0 & 1 \end{pmatrix} \qquad \text{and} \qquad \{\gamma^{\bf 5},\gamma^\mu\}={\bf 0} \ .$$

# Four-component fermions: Dirac and Majorana spinors (2).

A Dirac spinor is defined as

$$\psi_{D} = \begin{pmatrix} \psi_{\alpha} \\ \bar{\chi}^{\dot{\alpha}} \end{pmatrix} \ ,$$

which is a reducible representation of the Lorentz algebra.

Generators of the Lorentz algebra: a set of 10 4 × 4 matrices

$$\gamma^{\mu\nu} = -\frac{i}{4} \begin{bmatrix} \gamma^{\mu}, \gamma^{\nu} \end{bmatrix} = \begin{pmatrix} \sigma^{\mu\nu} & 0 \\ 0 & \bar{\sigma}^{\mu\nu} \end{pmatrix}$$

A finite Lorentz transformation is given by

$$\Lambda_{(\frac{1}{2},0)\oplus(0,\frac{1}{2})} = \exp\left[\frac{i}{2}\omega_{\mu\nu}\gamma^{\mu\nu}\right] = \begin{pmatrix} \Lambda_{(\frac{1}{2},0)} & 0 \\ 0 & \Lambda_{(0,\frac{1}{2})} \end{pmatrix} .$$

A Majorana spinor is defined as

$$\psi_{\mathsf{M}} = \begin{pmatrix} \psi_{\alpha} \\ \bar{\psi}^{\dot{\alpha}} \end{pmatrix} ,$$

⇔ a Dirac spinor with conjugate left- and right-handed components.

$$ar{\psi}^{\dot{lpha}} = arepsilon^{\dot{lpha}\dot{eta}}ar{\psi}_{\dot{eta}} \qquad ext{with} \qquad ar{\psi}_{\dot{eta}} = \left(\psi_{eta}
ight)^{\dagger} \; .$$

# Summary - Representations and particles.

#### Irreducible representations of the Poincaré algebra vs. particles.

- Scalar particles (Higgs boson).
  - \* (0,0) representation.
- Massive Dirac fermions (quarks and leptons after symmetry breaking).
  - \*  $(1/2,0) \oplus (0,1/2)$  representation.
  - \* The mass term mixes both spinor representations.
- Massive Majorana fermions (not in the Standard Model ⇒ dark matter).
  - \*  $(1/2,0) \oplus (0,1/2)$  representation.
  - \* A Majorana field is self conjugate (the particle = the antiparticle).
  - \* The mass term mixes both spinor representations.
- Massless Weyl fermions (fermions before symmetry breaking).
  - \* (1/2,0) or (0,1/2) representation.
  - \* The conjugate of a left-handed fermion is right-handed.
- Massless and massive vector particles (gauge bosons).
  - \* (1/2, 1/2) representation.

### Outline.



### Context.



### Special relativity and gauge theories.

- Action and symmetries.
- Poincaré and Lorentz algebras and their representations.
- Relativistic wave equations.
- Gauge symmetries Yang-Mills theories symmetry breaking.



### Construction of the Standard Model.

- Quantum Electrodynamics (QED).
- Scattering theory Calculation of a squared matrix element.
- Weak interactions
- The electroweak theory.
- Quantum Chromodynamics.



### Beyond the Standard Model of particle physics.

- The Standard Model: advantages and open questions.
- Grand unified theories
- Supersymmetry.
- Extra-dimensional theories
- String theory.



## Relativistic wave equations: scalar fields.

#### Definition:

- \* (0,0) representation of the Lorentz algebra.
- \* Lorentz transformation of a scalar field  $\phi$

$$\phi(x) \to \phi'(x') = \phi(x)$$
.

- Correspondence principle.
  - \*  $P_{ii} \leftrightarrow i\partial_{ii}$ .
  - \* Application to the mass-energy relation: the Klein-Gordon equation.  $P^2 = m^2 \leftrightarrow (\Box + m^2)\phi = 0.$
  - \* The associated Lagrangian is given by  $\mathcal{L}_{KG} = (\partial^{\mu}\phi)^{\dagger}(\partial_{\mu}\phi) m^{2}\phi^{\dagger}\phi$ , cf. Euler-Lagrange equations:

$$rac{\partial \mathcal{L}}{\partial \phi} - \partial_{\mu} rac{\partial \mathcal{L}}{\partial \left(\partial_{\mu} \phi \right)} = 0$$
 where  $\phi$  and  $\partial_{\mu} \phi$  are taken independent .

#### Scalar fields in the Standard Model.

- The only undiscovered particle is a scalar field: the Higgs boson.
- Remark: in supersymmetry, we have a lot of scalar fields [see below...].

#### Definition:

- \* (1/2, 1/2) representation of the Lorentz algebra.
- \* Lorentz transformation of a vector field  $A^{\mu}$

$$A^{\mu}(x) \rightarrow A^{\mu\prime}(x') = \left(\Lambda_{\left(\frac{1}{2},\frac{1}{2}\right)}\right)^{\mu}{}_{\nu}A^{\nu}(x)$$
.

- Maxwell equations and Lagrangian.
  - \* The relativistic Maxwell equations are

$$\partial_{\mu} \mathbf{F}^{\mu\nu} = \mathbf{j}^{\nu}$$
.

- \*  $F_{\mu\nu} = \partial_{\mu}A_{\nu} \partial_{\nu}A_{\mu}$  is the field strength tensor.
- \*  $i^{\nu}$  is the electromagnetic current.
- \* The associated Lagrangian is given by

$$\mathcal{L}_{\text{EM}} = -\frac{1}{4} \textbf{F}_{\mu\nu} \textbf{F}^{\mu\nu} - \textbf{A}^{\mu} \textbf{j}_{\mu} \ . \label{eq:emultiple}$$

This corresponds to an Abelian U(1) (commutative) gauge group.

# Relativistic wave equations: vector fields (2).

- The non-abelian (non-commutative) group SU(N).
  - \* The group is of dimension  $N^2-1$ .
  - \* The algebra is generated by  $N^2-1$  matrices  $T_a$  ( $a=1,\ldots,N^2-1$ ),

$$\left[ T_{a},T_{b}\right] =if_{ab}{}^{c}\ T_{c}\ ,$$

where  $f_{ab}{}^c$  are the structure constants of the algebra. Example: SU(2):  $f_{ab}{}^{c} = \varepsilon_{ab}{}^{c}$ .

- \* Usually employed representations for model building.
  - $\diamond$  Fundamental and anti-fundamental:  $N \times N$  matrices so that

$${
m Tr}(\mathsf{T}_a) = 0$$
 and  $\mathsf{T}_a^\dagger = \mathsf{T}_a$  .

 $\diamond$  Adjoint:  $(N^2 - 1) \times (N^2 - 1)$  matrices given by

$$(T_a)_b^c = -if_{ab}^c$$
.

For a given representation  $\mathcal{R}$ :

$$\operatorname{Tr}(\mathbf{T_aT_b}) = \tau_{\mathcal{R}}\delta_{\mathbf{ab}}$$
,

where  $\tau_{\mathcal{R}}$  is the **Dynkin index** of the representation.

### Application to physics.

- \* We select a gauge group (here: SU(N)).
- \* We define a coupling constant (here g).
- \* We assign representations of the group to matter fields.
- \* The  $N^2 1$  gauge bosons are given by  $A^{\mu} = A^{\mu a} T_a$ .
- \* The field strength tensor is defined by

$$\begin{split} \textbf{F}_{\mu\nu} &= \partial_{\mu} \textbf{A}_{\nu} - \partial_{\nu} \textbf{A}_{\mu} - i \textbf{g} [\textbf{A}_{\mu}, \textbf{A}_{\nu}] \\ &= \left[ \partial_{\mu} \textbf{A}_{\nu}^{c} - \partial_{\nu} \textbf{A}_{\mu}^{c} + \textbf{g} \ \textbf{f}_{ab}{}^{c} \textbf{A}_{\mu}^{a} \textbf{A}_{\nu}^{b} \right] \ \textbf{T}_{c} \ . \end{split}$$

\* The associated Lagrangian is given by [Yang, Mills (1954)]

$$\mathcal{L}_{\mathsf{YM}} = -rac{1}{4 au_{\mathcal{R}}}\mathsf{Tr}(\mathsf{F}_{\mu
u}\mathsf{F}^{\mu
u})\;.$$

Contains self interactions of the vector fields.

#### Vector fields in the Standard Model.

- The gauge group is  $SU(3)_c \times SU(2)_I \times U(1)_Y$  [see below...].
- The bosons are the photon, the weak  $W^{\pm}$  and  $Z^0$  bosons, and the gluons.

## Relativistic wave equations: Dirac spinors.

#### Definition:

Relativity - gauge theories 

- \*  $(1/2,0) \oplus (0,1/2)$  representation of the Poincaré algebra.
- \* Lorentz transformations of a Dirac field  $\psi_D$

$$\psi_D(x) \to \psi'_D(x') = \Lambda_{(\frac{1}{2},0) \oplus (0,\frac{1}{2})} \psi_D(x)$$
.

#### Dirac's idea.

- \* The Klein-Gordon equation is quadratic ⇒ particles and antiparticles.
- \* A conceptual problem in the 1920's.
- \* Linearization of the d'Alembertian:

$$(\mathrm{i}\gamma^\mu\partial_\mu-\mathrm{m})\psi_\mathrm{D}=\mathbf{0}\qquad\Leftrightarrow\qquad\mathcal{L}_\mathrm{D}=\bar{\psi}_\mathrm{D}(\mathrm{i}\gamma^\mu\partial_\mu-\mathrm{m})\psi_\mathrm{D}\ ,$$

#### where

- $\bar{\psi}_D = \psi_D^{\dagger} \gamma^0$ .
- $(\gamma^{\mu}\partial_{\mu})^2 = \Box \Leftrightarrow \{\gamma^{\mu}, \gamma^{\nu}\} = 2n^{\mu\nu}$ .

#### Fermionic fields in the Standard Model.

- Matter ≡ Dirac spinors after symmetry breaking.
- Matter ≡ Weyl spinors before symmetry breaking [see below...].

# Summary - Relativistic wave equations.

#### Relativistic wave equations.

- General properties.
  - \* The equations derive from Poincaré invariance.
- Scalar particles (Higgs boson).
  - Klein-Gordon equation.
- Massive Dirac and Majorana fermions (quarks and leptons).
  - Dirac equation.
- Massless and massive vector particles (gauge bosons).
  - \* Maxwell equations (Abelian case).
  - \* Yang-Mills equations (non-Abelian case).

## Outline.



### Context.



### Special relativity and gauge theories.

- Action and symmetries.
- Poincaré and Lorentz algebras and their representations.
- Relativistic wave equations.
- Gauge symmetries Yang-Mills theories symmetry breaking.



### Construction of the Standard Model.

- Quantum Electrodynamics (QED).
- Scattering theory Calculation of a squared matrix element.
- Weak interactions
- The electroweak theory.
- Quantum Chromodynamics.



### Beyond the Standard Model of particle physics.

- The Standard Model: advantages and open questions.
- Grand unified theories
- Supersymmetry.
- Extra-dimensional theories
- String theory.



Summary.

## Global symmetries for the Dirac Lagrangian.

#### Toy model.

- \* We select the gauge group SU(N) with a coupling constant g.
- \* We assign the fundamental representations to the fermion fields  $\Psi$ ,

$$\Psi = \begin{pmatrix} \psi_1 \\ \vdots \\ \psi_N \end{pmatrix}$$
 ,  $\bar{\Psi} = (\bar{\psi}_1 \quad \cdots \quad \bar{\psi}_N)$  .

\* The Lagrangian reads

$$\mathcal{L} = ar{\Psi} \Big( \emph{i} \gamma^{\mu} \partial_{\mu} - \emph{m} \Big) \Psi \; .$$

- The global SU(N) invariance.
  - \* We define a global SU(N) transformation of parameters  $\omega^a$ ,

$$\Psi(x) \to \Psi'(x) = \exp\left[+ig\omega^a T_a^{\text{fund}}\right] \Psi \equiv U \Psi ,$$

 $ar{\Psi}( ext{x}) 
ightarrow ar{\Psi}'( ext{x}) = ar{\Psi} \exp \left[ - i g \omega^a T_a^{ ext{fund}} 
ight] \equiv ar{\Psi} \ U^\dagger \ .$ 

\* The Lagrangian is invariant,

$$\mathcal{L} 
ightarrow \mathcal{L}$$
 .

- Local (internal) SU(N) invariance.
  - \* Promotion of the global invariance to a local invariance.
  - \* We define a local SU(N) transformation of parameters  $\omega^a(x)$ ,

$$\Psi(x) \rightarrow \Psi'(x) = U(x) \; \Psi \; , \qquad \bar{\Psi}(x) \rightarrow \bar{\Psi}'(x) = \bar{\Psi} \; U^{\dagger}(x) \; .$$

\* The Lagrangian is not invariant anymore.

$$\begin{array}{cccc} \partial_{\mu}\Psi(x) & \not \longrightarrow & U(x) \; \partial_{\mu}\Psi(x) \\ \mathcal{L} = \bar{\Psi}\Big(i\gamma^{\mu}\partial_{\mu} - m\Big)\Psi & \not \longrightarrow & \mathcal{L} \; . \end{array}$$

- Due to:
  - $\diamond$  The spacetime dependence of U(x).
  - ♦ The presence of derivatives in the Lagrangian.
- \* Idea: modification of the derivative
  - ♦ Introduction of a new field with ad hoc transformation rules.
  - Recovery of the Lagrangian invariance.

# Gauge symmetries for the Dirac Lagrangian (2).

- Local (internal) SU(N) invariance.
  - \* Local invariance is recovered after:
    - $\diamond$  The introduction of a **new vector field**  $A^{\mu} = A^{\mu a} T_{a}^{\text{fund}}$  with

$$\begin{split} A^{\mu}(x) &\to A^{\mu\prime}(x) = U(x) \Big[ A^{\mu}(x) + \frac{i}{g} \partial^{\mu} \Big] U^{\dagger}(x) \;, \\ F^{\mu\nu}(x) &\to U(x) F^{\mu\nu}(x) U^{\dagger}(x) \quad \Rightarrow \quad \mathrm{Tr} \big( F^{\mu\nu} F_{\mu\nu} \big) \to \mathrm{Tr} \big( F^{\mu\nu} F_{\mu\nu} \big) \;. \end{split}$$

The modification of the derivative into a covariant derivative.

$$\partial_{\mu}\Psi(x) o D_{\mu}\Psi(x) = \left[\partial_{\mu} - igA_{\mu}(x)\right]\Psi(x) .$$

Transformation laws:

$$D_{\mu}\Psi(x) \rightarrow U(x) D_{\mu}\Psi(x) \Rightarrow \mathcal{L} \rightarrow \mathcal{L}$$
.

This holds (and simplifies) for U(1) gauge invariance. In particular:

$$A^{\mu}(x) \rightarrow A^{\mu\prime}(x) = A^{\mu}(x) + \partial^{\mu}\omega(x)$$
.

Example: Abelian  $U(1)_{e.m.}$  gauge group for electromagnetism.

## Symmetry breaking - theoretical setup.

- Let us consider a  $U(1)_X$  gauge symmetry.
  - \* Gauge boson  $X_{\mu}$  gauge coupling constant  $g_X$ .
- Matter content.
  - \* A set of fermionic particles  $\Psi^{j}$  of charge  $\mathbf{q}_{v}^{j}$ .
  - \* A complex scalar field  $\phi$  with charge  $\mathbf{q}_{\phi}$ .
- Lagrangian.
  - Kinetic and gauge interaction terms for all fields.

$$\begin{split} \mathcal{L}_{\mathrm{kin}} &= -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} + \bar{\Psi}_j \ i \gamma^{\mu} D_{\mu} \ \Psi^j + (D_{\mu} \phi)^{\dagger} (D^{\mu} \phi) \\ &= -\frac{1}{4} \Big( \partial_{\mu} X_{\nu} - \partial_{\nu} X_{\mu} \Big) \Big( \partial^{\mu} X^{\nu} - \partial^{\nu} X^{\mu} \Big) \\ &+ \bar{\Psi}_j \gamma^{\mu} \Big( i \partial_{\mu} + g_X q_X^j X_{\mu} \Big) \Psi^j + \Big[ \Big( \partial_{\mu} + i g_X q_{\phi} X_{\mu} \Big) \phi^{\dagger} \Big] \Big[ \Big( \partial^{\mu} - i g_X q_{\phi} X^{\mu} \Big) \phi \Big] \ . \end{split}$$

\* A scalar potential ( $\mathcal{L}_V = -V_{\rm scal}$ ) and Yukawa interactions.

$$\begin{split} V_{\rm scal} &= \, - \, \mu^2 \phi^\dagger \phi + \lambda (\phi^\dagger \phi)^2 \qquad \text{with} \quad \lambda > 0 \;, \quad \mu^2 > 0 \;, \\ \mathcal{L}_{\rm Yuk} &= \, - \, y_j \phi \bar{\Psi}_j \Psi^j + {\rm h.c.} \qquad \text{with y}_j \; {\rm being \; the \; Yukawa \; coupling.} \end{split}$$

### Symmetry breaking - minimization of the scalar potential.

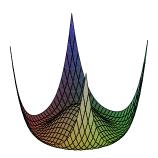
The system lies at the minimum of the potential.

$$rac{\mathrm{d}V_{\mathrm{scal}}}{\mathrm{d}\phi} = 0 \Leftrightarrow \langle \phi 
angle = rac{1}{\sqrt{2}} \sqrt{rac{\mu^2}{\lambda}} \, \mathrm{e}^{ilpha_0} \; .$$

- $\mathbf{v} = \sqrt{2} \langle \phi \rangle$  is the vacuum expectation value (vev) of the field  $\phi$ .
- We define  $\phi$  such that  $\alpha_0 = 0$ .
- We shift the scalar field by its vev

$$\phi = \frac{1}{\sqrt{2}} \Big[ v + A + i B \Big] \ ,$$

where A and B are real scalar fields.



$$V_{\rm scal} = -\mu^2 \phi^\dagger \phi + \lambda (\phi^\dagger \phi)^2$$
.

## Symmetry breaking - mass eigenstates (1).

#### We shift the scalar field by its vev.

$$\phi = \frac{1}{\sqrt{2}} \Big[ \mathbf{v} + \mathbf{A} + \mathbf{i} \ \mathbf{B} \Big] \ .$$

#### Scalar mass eigenstates.

The scalar potential reads now

$$V_{\rm scal} = \frac{\lambda v^2 A^2}{4} + \lambda \left[ \frac{1}{4} A^4 + \frac{1}{4} B^4 + \frac{1}{2} A^2 B^2 + v A^3 + v A B^2 \right] \; . \label{eq:Vscal}$$

- One gets self interactions between A and B.
- \* A is a massive real scalar field,  $m_{\Delta}^2 = 2\mu^2$ , the so-called Higgs boson.
- B is a massless pseudoscalar field, the so-called Goldstone boson.

### Symmetry breaking - mass eigenstates (2).

We shift the scalar field by its vev.

$$\phi = \frac{1}{\sqrt{2}} \Big[ \mathbf{v} + \mathbf{A} + \mathbf{i} \ \mathbf{B} \Big] \ .$$

- Gauge boson mass  $m_X$ .
  - \* The kinetic and gauge interaction terms for the scalar field  $\phi$  read now

$$\begin{split} \left(D^{\mu}\phi^{\dagger}\right) \left(D_{\mu}\phi\right) &= \left[\left(\partial_{\mu} + i g_{X} q_{\phi} X_{\mu}\right) \phi^{\dagger}\right] \left[\left(\partial^{\mu} - i g_{X} q_{\phi} X^{\mu}\right) \phi\right] \\ &= \frac{1}{2} \partial_{\mu} \mathbf{A} \partial^{\mu} \mathbf{A} + \frac{1}{2} \partial_{\mu} \mathbf{B} \partial^{\mu} \mathbf{B} + \frac{1}{2} \mathbf{g}_{\mathbf{X}}^{2} \mathbf{v}^{2} \mathbf{X}_{\mu} \mathbf{X}^{\mu} + \dots \end{split}$$

- \* One gets kinetic terms for the A and B fields.
- The dots stand for bilinear and trilinear interactions of A, B and  $X_{\mu}$ .
- The gauge boson becomes massive,  $m_X = g_X v$ .
- \* The Goldstone boson is eaten  $\equiv$  the third polarization state of  $X_{\mu}$ .
- \* The gauge symmetry is spontaneously broken.

# Symmetry breaking - mass eigenstates (3).

### We shift the scalar field by its vev.

$$\phi = rac{1}{\sqrt{2}} \Big[ \mathbf{v} + \mathbf{A} + \mathbf{i} \,\, \mathbf{B} \Big] \,\, .$$

- Fermion masses  $m_i$ .
  - The Yukawa interactions read now

$$\mathcal{L}_{\rm Yuk} = -y_j \phi \bar{\Psi}_j \Psi^j \rightarrow \frac{1}{\sqrt{2}} \; y_j v \; \bar{\Psi}_j \Psi^j + \frac{1}{\sqrt{2}} \; y_j \; (\mathsf{A} + i \; \mathsf{B}) \; \bar{\Psi}_j \Psi^j \; . \label{eq:LYuk}$$

- \* One gets **Yukawa interactions** between A, B and  $\Psi^{j}$ .
- \* The fermion fields become massive,  $\mathbf{m_i} = \mathbf{y_i} \mathbf{v}$ .

#### Noether procedure to get gauge invariant Lagrangians.

- Choose a gauge group.
- Setup the matter field content in a given representation.
- Start from the free Lagrangian for matter fields.
- Promote derivatives to covariant derivatives.
- **5** Add kinetic terms for the gauge bosons ( $\mathcal{L}_{YM}$  or  $\mathcal{L}_{M}$ ).

#### Some remarks:

- \* The Noether procedure holds for both fermion and scalar fields.
- \* This implies that the interactions are dictated by the geometry.
- \* The gauge group and matter content are **not predicted**.
- The symmetry can be eventually broken.
- \* The theory must be anomaly-free.
- \* This holds in any number of spacetime dimensions.
- \* This can be generalized to superfields (supersymmetry, supergravity).

### Outline.





- Action and symmetries.
- Poincaré and Lorentz algebras and their representations.
- Relativistic wave equations.
- Gauge symmetries Yang-Mills theories symmetry breaking.



Construction of the Standard Model.

- Quantum Electrodynamics (QED).
- Scattering theory Calculation of a squared matrix element.
- Weak interactions
- The electroweak theory.
- Quantum Chromodynamics.



- The Standard Model: advantages and open questions.
- Grand unified theories
- Supersymmetry.
- Extra-dimensional theories
- String theory.

### Theoretical setup.

- The electromagnetism is the simplest gauge theory.
- We consider an Abelian gauge group,  $U(1)_{e.m.}$ .
  - \* Gauge boson: the photon  $\mathbf{A}_{\mu}$ .
  - \* Gauge coupling constant: the electromagnetic coupling constant e.
  - We relate e to  $\alpha = \frac{e^2}{4\pi}$ .
  - Both quantities depend on the energy (cf. renormalization):

$$lpha(0)pprox rac{1}{137} \qquad ext{and} \qquad lpha(100 ext{GeV})pprox rac{1}{128} \; .$$

Matter content.

| Name             | Field            |                        |                   | Electric charge q |
|------------------|------------------|------------------------|-------------------|-------------------|
|                  | $1^{ m st}$ gen. | $2^{\mathrm{nd}}$ gen. | $3^{ m rd}$ gen.  | Liectric charge q |
| Charged lepton   | $\Psi_e$         | $\Psi_{\mu}$           | $\Psi_{	au}$      | -1                |
| Neutrino         | $\Psi_{ u_e}$    | $\Psi_{\nu_{\mu}}$     | $\Psi_{\nu_\tau}$ | 0                 |
| Up-type quarks   | $\Psi_u$         | $\Psi_c$               | $\Psi_t$          | 2/3               |
| Down-type quarks | $\Psi_d$         | $\Psi_s$               | $\Psi_b$          | -1/3              |

#### We start from the free Lagrangian,

$$\mathcal{L}_{\rm free} = \sum_{j=e,\nu_e,u,d,\dots} \bar{\Psi}_j \; i \gamma^\mu \partial_\mu \Psi^j \; .$$

The Noether procedure leads to

$$\mathcal{L}_{\mathrm{QED}} = \sum_{j=e,\nu_e,u,d,\dots} \bar{\Psi}_j \; i \gamma^\mu D_\mu \Psi^j - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} \qquad \text{with } \left\{ \begin{array}{l} D_\mu = \partial_\mu - i \mathrm{e} \mathrm{q} A_\mu \; , \\ F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu \; . \end{array} \right.$$

The electromagnetic interactions are given by

$$\mathcal{L}_{\mathrm{int}} = \sum_{j=e,u,d,...} ar{\Psi}_j \; eq \gamma^\mu A_\mu \Psi^j \; .$$

- **≡** photon-fermion-antifermion vertices:
  - \*  $\gamma^{\mu} \sim$  the fermions couple through their spin.
  - \* **q** → the fermions couple through their **electric charge**.

### Outline.



### Context.



### Special relativity and gauge theories.

- Action and symmetries.
- Poincaré and Lorentz algebras and their representations.
- Relativistic wave equations.
- Gauge symmetries Yang-Mills theories symmetry breaking.



#### Construction of the Standard Model.

- Quantum Electrodynamics (QED).
- Scattering theory Calculation of a squared matrix element.
- Weak interactions
- The electroweak theory.
- Quantum Chromodynamics.



### Beyond the Standard Model of particle physics.

- The Standard Model: advantages and open questions.
- Grand unified theories
- Supersymmetry.
- Extra-dimensional theories
- String theory.
- Summary.

### From Lagrangians to practical computations (1).

- Scattering theory.
  - \* Initial state i(t) at a date t.
  - \* Evolution to a date t'
  - \* Transition to a final state f(t') (at the date t').
  - \* The transition is related to the so-called S-matrix:

$$S_{fi} = \left\langle f(t') \mid i(t') \right\rangle = \left\langle f(t') \mid S \mid i(t) \right\rangle.$$

- Perturbative calculation of  $S_{fi}$ .
  - \*  $S_{fi}$  is related to the path integral

$$\int \mathrm{d} \big( \mathsf{fields} \big) \ e^{i \int \mathrm{d}^4 x \mathcal{L}(x)} \ ,$$

\*  $S_{fi}$  can be perturbatively expanded as:

$$\begin{split} S_{fi} &= \delta_{fi} + i \bigg[ \int \mathrm{d}^4 x \mathcal{L}(x) \bigg]_{fi} - \frac{1}{2} \bigg[ \int \mathrm{d}^4 x \mathrm{d}^4 x' \, T \Big\{ \mathcal{L}(x) \mathcal{L}(x') \Big\} \bigg]_{fi} + \dots \\ &= \text{no interaction} \, + \, \text{one interaction} \, + \, \text{two interactions} \, + \dots \\ &= \delta_{fi} + i T_{fi} \, . \end{split}$$

We need to calculate  $T_{fi}$ .

### From Lagrangians to practical computations (2).

- Example in QED with one interaction: the  $e^+e^- \rightarrow \gamma$  process.
  - The Lagrangian is given by

$$\mathcal{L}_{\mathrm{QED}} = \sum_{j=e,\nu_e,u,d,...} \bar{\Psi}_j \; i \gamma^\mu D_\mu \Psi^j - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} \qquad \text{with } \left\{ \begin{array}{l} D_\mu = \partial_\mu - i \mathrm{e} \mathrm{q} A_\mu \; , \\ F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu \; . \end{array} \right.$$

- \* Initial state  $i = e^+e^-$  and final state:  $f = \gamma$ .
- \* One single interaction term containing the  $\Psi_e$ ,  $\bar{\Psi}_e$  and  $A_\mu$  fields.

$$\mathcal{L}_{\mathrm{QED}} \Rightarrow -e \; \bar{\Psi}_e \; \gamma^\mu A_\mu \Psi^e \; .$$

\* The corresponding contribution to  $S_{fi}$  reads

$$i \left[ \int \mathrm{d}^4 x \mathcal{L}(x) \right]_{fi} = i \int \mathrm{d}^4 x \, \left[ - e \, \bar{\Psi}_e \, \gamma^\mu A_\mu \Psi^e \right] \, .$$

- More than one interaction.
  - Intermediate, virtual particles are allowed. e.g.:  $e^+e^- \rightarrow \mu^+\mu^- \rightarrow e^+e^- \rightarrow \gamma^* \rightarrow \mu^+\mu^-$ .
  - \* Same principles, but accounting in addition for chronology.

- We consider the specific process  $i_1(p_a) + i_2(p_b) \rightarrow f_1(p_1) + \ldots + f_n(p_n)$ .
  - \* The initial state is  $i(t) = i_1(p_a)$ ,  $i_2(p_b)$  (as in colliders).
  - \* The *n*-particle final state is  $f(t') = f_1(p_1), \ldots, f_n(p_n)$ .
  - \*  $p_a, p_b, p_1, \ldots$ , and  $p_n$  are the four-momenta.
- We solve the equations of motion and the fields are expanded as plane waves.

$$\psi = \int \mathrm{d}^4 p \, \left[ (\ldots) \mathrm{e}^{-i p \cdot x} + (\ldots) \mathrm{e}^{+i p \cdot x} \right] \, \ldots$$

- \* The unspecified terms correspond to annihilation/creation operators of (anti)particles (harmonic and fermionic oscillators).
- We inject these solutions in the Lagrangian.
  - \* Integrating the exponentials leads to momentum conservation.

$$\int \mathrm{d}^4x \Big[ e^{-ip_a\cdot x} e^{-ip_b\cdot x} \prod_i e^{-ip_j\cdot x} \Big] = (2\pi)^4 \; \delta^{(4)} \Big( p_a + p_b - \sum_i p_j \Big) \; .$$

### From Lagrangians to practical computations (4).

We define the matrix element.

$$iT_{fi} = (2\pi)^4 \, \, \delta^{(4)} \Big( p_a + p_b - \sum_i p_j \Big) i M_{fi} \, \, .$$

- By definition, the total cross section:
  - Is the total production rate of the final state from the initial state.
  - \* Requires an integration over all final state configurations.
  - Requires an average over all initial state configurations.

$$\sigma = \frac{1}{F} \int \mathrm{dPS}^{(n)} \overline{\left| M_{ff} \right|^2} \ .$$

The differential cross section with respect to a kinematical variable  $\omega$  is

$$rac{\mathrm{d}\sigma}{\mathrm{d}\omega} = rac{1}{F} \int \mathrm{dPS}^{(n)} \overline{\left|M_{ff}
ight|^2} \delta\!\left(\omega - \omega(p_a, p_b, p_1, \dots, p_n)
ight) \,.$$

# From Lagrangians to practical computations (5).

#### Total cross section.

$$\sigma = \frac{1}{F} \int \mathrm{dPS}^{(n)} \overline{\left| M_{fi} \right|^2} \; . \label{eq:sigma}$$

The integration over phase space (cf. final state) reads

$$\int \mathrm{dPS}^{(n)} = \int (2\pi)^4 \; \delta^{(4)} \Big( \mathbf{p_a} + \mathbf{p_b} - \sum_{\mathbf{j}} \mathbf{p_j} \Big) \prod_j \left[ \frac{\mathrm{d}^4 p_j}{(2\pi)^4} (2\pi) \delta(\mathbf{p_j^2} - \mathbf{m_j^2}) \theta(\mathbf{p_j^0}) \right] \; . \label{eq:dPS}$$

- \* It includes momentum conservation.
- \* It includes mass-shell conditions
- \* The energy is positive.
- \* We integrate over all final state momentum configurations.
- The flux factor F (cf. initial state) reads

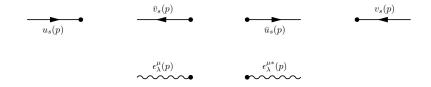
$$\frac{1}{F} = \frac{1}{4\sqrt{(p_a \cdot p_b)^2 - m_a^2 m_b^2}} \ .$$

It normalizes  $\sigma$  with respect to the initial state density by surface unit.

### From Lagrangians to practical computations (6).

- The squared matrix element  $|M_{fi}|^2$ 
  - \* Is averaged over the initial state quantum numbers and spins.
  - \* Is summed over the final state quantum numbers and spins.
  - \* Can be calculated with the Fevnman rules derived from the Lagrangian.
    - ♦ External particles: spinors, polarization vectors, . . . .
    - ♦ Intermediate particles: propagators.
    - Interaction vertices.
- External particles.
  - Rules derived from the solutions of the equations of motion.
- Propagators.
  - \* Rules derived from the free Lagrangians.
- Vertices.
  - Rules directly extracted from the interaction terms of the Lagrangian.

Feynman rules for external particles (spinors, polarization vectors).



Obtained after solving Dirac and Maxwell equations.

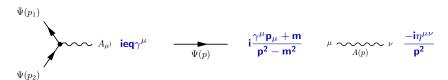
$$\psi = \int \mathrm{d}^4 p \, \left[ (\ldots) e^{-ip \cdot x} + (\ldots) e^{+ip \cdot x} \right] \, \ldots$$

- \* They are the physical degrees of freedom (included in the dots).
- \* We do not need their explicit forms for practical calculations [see below...].

Interactions and propagators.

### QED Lagrangian.

$$\mathcal{L}_{\rm QED} = \sum_{j=e,\nu_e,u,d,\dots} \bar{\Psi}_j \ i \gamma^\mu \Big( \partial_\mu - \text{ieq} A_\mu \Big) \Psi^j - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} \ . \label{eq:QED}$$

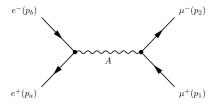




- We need to fix the gauge to derive the photon propagator.  $\sim$  Feynman gauge:  $\partial_{\mu}A^{\mu}=0$ .
- Any other theory would lead to similar rules.

# Example of a calculation: $e^+e^- \rightarrow \mu^+\mu^-$ (1).

Drawing of the Feynman diagram, using the available Feynman rules.



Amplitude *iM* from the Feynman rules (following reversely the fermion lines).

$$iM = \left[\bar{v}_{s_a}(p_a) \; (-ie\gamma^{\mu}) \; u_{s_b}(p_b)\right] \left[\bar{u}_{s_2}(p_2) \; (-ie\gamma^{\nu}) \; v_{s_1}(p_1)\right] \frac{-i\eta_{\mu\nu}}{(p_a+p_b)^2} \; .$$

Derivation of the conjugate amplitude  $-iM^{\dagger}$ .

$$\begin{split} i M &= \left[ \bar{v}_{s_a}(p_a) \; (-ie\gamma^\mu) \; u_{s_b}(p_b) \right] \left[ \bar{u}_{s_2}(p_2) \; (-ie\gamma^\nu) \; v_{s_1}(p_1) \right] \frac{-i\eta_{\mu\nu}}{(p_a+p_b)^2} \; , \\ -i M^\dagger &= \left[ \bar{u}_{s_b}(p_b) \; (ie\gamma^\mu) \; v_{s_a}(p_a) \right] \left[ \bar{v}_{s_1}(p_1) \; (ie\gamma^\nu) \; u_{s_2}(p_2) \right] \frac{i\eta_{\mu\nu}}{(p_a+p_b)^2} \; . \end{split}$$

- \* Definitions:  $\bar{u} = u^{\dagger} \gamma^0$  and  $\bar{v} = v^{\dagger} \gamma^0$ .
- \* We remind that  $(\gamma^{\mu})^{\dagger} = \gamma^{0} \gamma^{\mu} \gamma^{0}$ .
- \* We remind that  $\gamma^0 \gamma^0 = 1$  and  $(\gamma^0)^{\dagger} = \gamma^0$ .
- Computation of the squared matrix element  $|M|^2$ .

$$\overline{|M|^2} = \frac{1}{2} \frac{1}{2} (iM) (-iM^{\dagger}).$$

- \* We average over the initial electron spin  $\sim 1/2$ .
- \* We average over the initial positron spin  $\sim 1/2$ .

Computation of the squared matrix element  $|M|^2$ .

$$\overline{|M|^2} = \frac{e^4}{4(\rho_a + \rho_b)^4} \mathrm{Tr} \Big[ \gamma^\mu (\rlap/p_b + m_e) \gamma^\rho (\rlap/p_a - m_e) \Big] \; \mathrm{Tr} \Big[ \gamma_\mu (\rlap/p_1 - m_\mu) \gamma_\rho (\rlap/p_2 + m_\mu) \Big] \; . \label{eq:mass}$$

- \* We have performed a sum over all the particle spins.
- \* We have introduced  $p = \gamma^{\nu} \mathbf{p}_{\nu}$ , the electron and muon masses  $\mathbf{m}_{e}$  and  $\mathbf{m}_{\mu}$ .
- \* We have used the properties derived from the Dirac equation

$$\sum_s u_s(p) \overline{u}_s(p) = \not\! p + m \quad \text{and} \quad \sum_s v_s(p) \overline{v}_s(p) = \not\! p - m \ .$$

For completeness, Maxwell equations tell us that

$$\sum_{\lambda} \epsilon_{\lambda}^{\mu}({f p}) \epsilon_{\lambda}^{
u*}({f p}) = -\eta^{\mu
u}$$
 . [This relation is gauge-dependent.]

# Example of a calculation: $e^+e^- \rightarrow \mu^+\mu^-$ (4).

Simplification of the traces, in the massless case,

$$\overline{|M|^2} = \frac{8e^4}{(p_a + p_b)^4} \Big[ (p_b \cdot p_1)(p_a \cdot p_2) + (p_b \cdot p_2)(p_a \cdot p_1) \Big] \ .$$

We have used the properties of the Dirac matrices

$$\begin{split} &\operatorname{Tr} \Big[ \gamma^{\mu_1} \dots \gamma^{\mu_{2k+1}} \Big] = \mathbf{0} \ , \\ &\operatorname{Tr} \Big[ \gamma^{\mu} \gamma^{\nu} \Big] = \mathbf{4} \eta^{\mu \nu} \ , \\ &\operatorname{Tr} \Big[ \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma} \Big] = \mathbf{4} \Big( \eta^{\mu \nu} \eta^{\rho \sigma} - \eta^{\mu \rho} \eta^{\nu \sigma} + \eta^{\mu \sigma} \eta^{\nu \rho} \Big) \ , \\ &\operatorname{Tr} \Big[ \gamma^{\mathbf{5}} \Big] = \mathbf{0} \ , \\ &\operatorname{Tr} \Big[ \gamma^{\mathbf{5}} \gamma^{\mu} \gamma^{\nu} \Big] = \mathbf{0} \ , \\ &\operatorname{Tr} \Big[ \gamma^{\mathbf{5}} \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma} \Big] = \mathbf{4} \mathrm{i} \epsilon^{\mu \nu \rho \sigma} \quad \text{with} \quad \epsilon_{0123} = \mathbf{1} \ . \end{split}$$

Mandelstam variables and differential cross section.

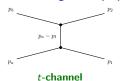
$$\overline{|M|^2} = \frac{2e^4}{s^2} \big[t^2 + u^2\big] \Rightarrow \frac{\mathrm{d}\sigma}{\mathrm{d}t} = \frac{e^4}{8\pi s^4} \big[t^2 + u^2\big] \ .$$

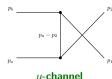
We have introduced the Mandelstam variables

$$\begin{split} s &= (p_a + p_b)^2 = (p_1 + p_2)^2 \ , \\ t &= (p_a - p_1)^2 = (p_b - p_2)^2 \ , \\ u &= (p_a - p_2)^2 = (p_b - p_1)^2 \ . \end{split}$$

Remark: sub-processes names according to the propagator.







### Summary - Matrix elements from Feynman rules.

#### Calculation of a matrix element.

- 1 Extraction of the Feynman rules from the Lagrangian.
- 2 Drawing of all possible Feynman diagrams for the considered process.
- Oerivation of the transition amplitudes using the Feyman rules.
- Calculation of the squared matrix element.
  - \* Sum/average over final/initial internal quantum numbers.
  - Calculation of traces of Dirac matrices.
  - \* Possible use of the Mandelstam variables

### Outline.



### Context.



### Special relativity and gauge theories.

- Action and symmetries.
- Poincaré and Lorentz algebras and their representations.
- Relativistic wave equations.
- Gauge symmetries Yang-Mills theories symmetry breaking.



### Construction of the Standard Model.

- Quantum Electrodynamics (QED).
- Scattering theory Calculation of a squared matrix element.
- Weak interactions
- The electroweak theory.
- Quantum Chromodynamics.



### Beyond the Standard Model of particle physics.

- The Standard Model: advantages and open questions.
- Grand unified theories
- Supersymmetry.
- Extra-dimensional theories
- String theory.



### Summary.

Proton decay (Hahn and Meitner, 1911).

$$p \rightarrow n + e^+$$
.

- Momentum conservation fixes final state energies to a single value (depending on the proton energy).
- \* Observation: the energy spectrum of the electron is continuous.
- Solution (Pauli, 1930): introduction of the neutrino.

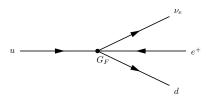
$$p \rightarrow n + e^+ + \nu_e \iff \mathbf{u} \rightarrow \mathbf{d} + \mathbf{e}^+ + \nu_e$$
 at the quark level.

- \* Reminder: p = uud (naively).
- \* Reminder: n = udd (naively).
- \*  $1 \rightarrow 3$  particle process: continuous electron energy spectrum.
- How to construct a Lagrangian describing beta decays?.

# The Fermi model of weak interactions (2).

Phenomenological model based on four-point interactions (Fermi, 1932).

$$\mathcal{L}_{\mathrm{Fermi}} = -2\sqrt{2} \textit{G}_{\textit{F}} \Big[\bar{\Psi}_{\textit{d}} \ \gamma_{\mu} \frac{1-\gamma^{5}}{2} \ \Psi_{\textit{u}} \Big] \Big[\bar{\Psi}_{\nu_{e}} \ \gamma^{\mu} \frac{1-\gamma^{5}}{2} \ \Psi_{\textit{e}} \Big] + \mathrm{h.c.} \ . \label{eq:energy_fit}$$



- \* Phenomenological model ⇔ reproducing experimental data.
- Based on four-fermion interactions.
- \* The coupling constant  $G_F$  is measured.
- \*  $G_F = 1.163710^{-5} \text{ GeV}^{-2}$  is dimensionful.

# The Fermi model of weak interactions (3).

The Fermi Lagrangian can be rewritten as

$$\mathcal{L}_{\mathrm{Fermi}} = -2\sqrt{2}G_{F}\left[\bar{\Psi}_{d} \gamma_{\mu} \frac{1-\gamma^{5}}{2} \Psi_{u}\right]\left[\bar{\Psi}_{\nu_{e}} \gamma^{\mu} \frac{1-\gamma^{5}}{2} \Psi_{e}\right] + \text{h.c.}$$

$$= -2\sqrt{2}G_{F}\mathbf{H}_{\mu}\mathbf{L}^{\mu} + \text{h.c.}.$$

- \* It contains a leptonic piece  $L^{\mu}$  and a quark piece  $H_{\mu}$ .
- \* Both pieces have the same structure.
- The structure of the weak interactions
  - \* The leptonic piece  $L^{\mu}$  has a V-A structure:

$$L^{\mu}=\bar{\Psi}_{\nu_e}\gamma^{\mu}\frac{1-\gamma^5}{2}\Psi_e=\frac{1}{2}\bar{\Psi}_{\nu_e}\gamma^{\mu}\Psi_e-\frac{1}{2}\bar{\Psi}_{\nu_e}\gamma^{\mu}\gamma^5\Psi_e\;.$$

- \* Similarly, the quark piece  $H_{\mu}$  has a V-A structure.
- \* The Fermi Lagrangian contains thus VV, AA and VA terms.
- Behavior under parity transformations.
  - \* Under a parity transformation:  $V \rightarrow -V$  and  $A \rightarrow A$ .
  - \* The VA terms (and thus weak interactions) violate parity.
  - \* Parity violation has been observed experimentally (Wu et al., 1956).

### The Fermi model of weak interactions (4).

Analysis of the currents  $L^{\mu}$  and  $H^{\mu}$ .

$$L^\mu = \bar{\Psi}_{\nu_e} \gamma^\mu rac{1-\gamma^5}{2} \Psi_e \qquad ext{and} \qquad H^\mu = \bar{\Psi}_d \gamma^\mu rac{1-\gamma^5}{2} \Psi_u \; .$$

- Presence of the left-handed chirality projector  $P_L = (1 \gamma^5)/2$ .
- Projectors and their properties.
  - \* The chirality projectors are given by

$$P_L = rac{1-\gamma^5}{2} \qquad ext{and} \qquad P_R = rac{1+\gamma^5}{2} \ .$$

\* They fulfill the properties

$$P_L + P_R = 1$$
,  $P_L^2 = P_L$  and  $P_R^2 = P_R$ .

\* If  $\Psi$  is a Dirac spinor, left and right associated spinors are recovered by

$$\Psi_D = \begin{pmatrix} \psi_L \\ \psi_R \end{pmatrix} \ , \qquad \Psi_L = P_L \Psi_D = \begin{pmatrix} \psi_L \\ 0 \end{pmatrix} \ , \qquad \Psi_R = P_R \Psi_D = \begin{pmatrix} 0 \\ \psi_R \end{pmatrix} \ .$$

Only left-handed fermions are sensitive to the weak interactions.

## The Fermi model of weak interactions (5).

Introducting the left-handed chirality projector  $P_L = 1/2(1 - \gamma^5)$ :

$$\begin{split} L^{\mu} &= \bar{\Psi}_{\nu_e} \gamma^{\mu} P_L \Psi_e = \bar{\Psi}_{\nu_e,L} \gamma^{\mu} \Psi_{e,L} \quad \text{and} \quad (L^{\mu})^{\dagger} = \bar{\Psi}_e \gamma^{\mu} P_L \Psi_{\nu_e} = \bar{\Psi}_{e,L} \gamma^{\mu} \Psi_{\nu_e,L} \; , \\ H^{\mu} &= \bar{\Psi}_d \gamma^{\mu} P_L \Psi_u = \bar{\Psi}_{d,L} \gamma^{\mu} \Psi_{u,L} \quad \text{and} \quad (H^{\mu})^{\dagger} = \bar{\Psi}_u \gamma^{\mu} P_L \Psi_d = \bar{\Psi}_{u,L} \gamma^{\mu} \Psi_{d,L} \; . \end{split}$$

- Behavior of the fields under the weak interacions.
  - Left-handed electron and neutrino behave similarly.
  - \* Up and down guarks behave similarly.
- Idea: group into doublets the left-handed components of the fields:

$$L_e = \begin{pmatrix} \Psi_{
u_e,L} \\ \Psi_{e,L} \end{pmatrix}$$
 and  $Q = \begin{pmatrix} \Psi_{u,L} \\ \Psi_{d,L} \end{pmatrix}$  .

The currents are then rewritten as:

$$\begin{split} L^{\mu} &= \bar{\Psi}_{\nu_e,L} \gamma^{\mu} \Psi_{e,L} = \bar{L}_e \gamma^{\mu} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} L_e \ , \\ (L^{\mu})^{\dagger} &= \bar{\Psi}_{e,L} \gamma^{\mu} \Psi_{\nu_e,L} = \bar{L}_e \gamma^{\mu} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} L_e \ . \end{split}$$

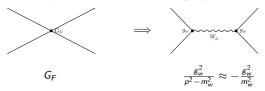
[Similar expressions hold for the quark piece].

## From Fermi model to $SU(2)_L$ gauge theory (1).

Problems of the Fermi model.

$$\mathcal{L}_{\mathrm{Fermi}} = -2\sqrt{2}G_F H_\mu L^\mu + \mathrm{h.c.}$$
 .

- \* Issues with quantum corrections, i.e., non-renormalizability.
- \* Effective theory valid up to an energy scale  $E \ll m_w \approx 100$  GeV.
- \* Fermi model is **not** based on **gauge symmetry principles**.
- Solution: a gauge theory (Glashow, Salam, Weinberg, 60-70, [Nobel prize, 1979]).
  - \* Four fermion interactions can be seen as a s-channel diagram.
  - \* Introduction of a new gauge boson  $W_{\mu}$ .
  - \* This boson couples to fermions with a strength  $g_w$ .



Prediction:  $g_w \sim \mathcal{O}(1) \Rightarrow m_w \sim 100 \text{ GeV}.$ 

Choice of the gauge group: suggested by the currents:

$$\begin{split} L^{\mu} &= \bar{L}_e \gamma^{\mu} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} L_e = \bar{L}_e \gamma^{\mu} \frac{\sigma^1 + i\sigma^2}{2} L_e \ , \\ (L^{\mu})^{\dagger} &= \bar{L}_e \gamma^{\mu} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} L_e . = \bar{L}_e \gamma^{\mu} \frac{\sigma^1 - i\sigma^2}{2} L_e \ . \end{split}$$

[Similar expressions hold for the quark piece].

- \* Two Pauli matrices appear naturally.
- \*  $\sigma^i/2$  are the generators of the SU(2) algebra (in the fundamental (dimension 2) representation).

We choose the SU(2) gauge group to describe weak interactions.

# From Fermi model to $SU(2)_L$ gauge theory (3).

We choose the  $SU(2)_L$  gauge group to describe weak interactions.

•  $1/2\sigma^i$  are the generators of the fundamental representation.

$$\left[\frac{1}{2}\sigma^i, \frac{1}{2}\sigma^j\right] = i\epsilon^{ij}{}_k \frac{1}{2}\sigma_k \ ,$$

- The left-handed doublets lie in the fundamental representation 2.
  - \* The left-handed fields are the only ones sensible to weak interactions.
  - \* A doublet is a two-dimensional object.
  - \* The Pauli matrices are 2 × 2 matrices.
  - \* This explains the L-subscript in  $SU(2)_I$ .
- The right-handed leptons lie in the trivial representation 1.
  - Non-sensible to weak interactions
- $SU(2)_L \sim$  three gauge bosons  $W_{ii}^i$  with i = 1, 2, 3.

# The $SU(2)_i$ gauge theory for weak interactions (1).

- How to construct the  $SU(2)_I$  Lagrangian?
- We start from the free Lagrangian for fermions.
  - Simplification-1: no quarks here.
  - \* Simplification-2: no right-handed neutrinos.

$$\mathcal{L}_{\mathrm{free}} = ar{\mathsf{L}}_{\mathsf{e}} \Big( i \gamma^\mu \partial_\mu \Big) \mathsf{L}_{\mathsf{e}} + ar{\mathsf{e}}_{\mathsf{R}} \Big( i \gamma^\mu \partial_\mu \Big) \mathsf{e}_{\mathsf{R}} \; .$$

- A mass term mixes left and right-handed fermions.
- \* The mass term are forbidden since  $L_e \sim 2$  and  $e_R \sim 1$ .
- We make the Lagrangian invariant under  $SU(2)_L$  gauge transformations.
  - \*  $SU(2)_L$  gauge transformations are given by

$$L_e \to \exp\Big[ig_w\omega_i(x)\frac{\sigma^i}{2}\Big]L_e = \mathit{U}(x)L_e \qquad \text{and} \qquad e_R \to e_R \ .$$

Gauge invariance requires covariant derivatives.

$$\partial_{\mu} L_e o D_{\mu} L_e = \left[ \partial_{\mu} - i g_w W_{\mu i} rac{\sigma^i}{2} 
ight] L_e \qquad ext{and} \qquad \partial_{\mu} e_R o D_{\mu} e_R = \partial_{\mu} e_R \,.$$

\* We have introduced one gauge boson for each generator  $\Rightarrow$  three  $W_{\mu i}$ .

# The $SU(2)_I$ gauge theory for weak interactions (2).

The matter sector Lagrangian reads then.

$$\mathcal{L}_{\mathrm{weak,matter}} = \overline{L}_e \Big( i \gamma^\mu D_\mu \Big) L_e + \overline{e}_R \Big( i \gamma^\mu D_\mu \Big) e_R \; .$$

with

$$D_\mu L_e = \Big[ \partial_\mu - i g_w W_{\mu i} \frac{\sigma^i}{2} \Big] L_e \qquad \text{and} \qquad D_\mu e_R = \partial_\mu e_R \; .$$

We must then add kinetic terms for the gauge bosons:

$$\mathcal{L}_{\rm weak,gauge} = -\frac{1}{4} W^i_{\mu\nu} W^{\mu\nu}_i \; . \label{eq:loss_loss}$$

\* The field strength tensor reads:

$$W^i_{\mu\nu} = \partial_\mu W^i_\nu - \partial_\nu W^i_\mu + \mathsf{g}_w \epsilon^i{}_{jk} W^j_\mu W^k_\nu \ .$$

Gauge invariance implies the transformation laws:

$$\frac{\sigma^i}{2}W_i^\mu \to U\Big[\frac{\sigma^i}{2}W_i^\mu + \frac{i}{g_{uv}}\partial^\mu\Big]U^\dagger \ .$$

# The $SU(2)_I$ gauge theory for weak interactions (3).

#### The weak interaction Lagrangian for leptons.

$$\mathcal{L}_{\rm weak,e} = \bar{L}_e \Big( i \gamma^\mu D_\mu \Big) L_e + \bar{e}_R \Big( i \gamma^\mu D_\mu \Big) e_R - \frac{1}{4} W^i_{\mu\nu} W^{\mu\nu}_i \ . \label{eq:weak}$$

with

$$\begin{split} D_{\mu}L_{e} &= \left[\partial_{\mu} - ig_{w}W_{\mu i}\frac{\sigma^{i}}{2}\right]L_{e} \;, \\ D_{\mu}e_{R} &= \partial_{\mu}e_{R} \;, \\ W_{\mu\nu}^{i} &= \partial_{\mu}W_{\nu}^{i} - \partial_{\nu}W_{\mu}^{i} + g_{w}\epsilon^{i}{}_{jk}W_{\mu}^{j}W_{\nu}^{k} \;. \end{split}$$

- Observation of the weak  $W_{ii}^{i}$ -bosons:
  - The experimentally observed  $W^{\pm}$ -bosons are defined by

$$W_{\mu}^{\pm} = \frac{1}{2} (W_{\mu}^{1} \mp i W_{\mu}^{2}) .$$

\* The  $W^3$ -boson cannot be identified to the  $Z^0$  or  $\gamma$ : Both couple to left-handed and right-handed leptons.

 $SU(2)_I$  gauge theory cannot explain all data...

#### A gauge theory for weak interactions.

- Based on the non-Abelian  $SU(2)_L$  gauge group.
- Matter (1): doublets with the left-handed component of the fields.
  - \* Fundamental representation.
  - \* Generators: Pauli matrices (over two).
- Matter (2): the right-handed component of the fields are singlet.
- Three massless gauge bosons.
  - \*  $(W_{\mu}^{1}, W_{\mu}^{2}) \Longrightarrow (W_{\mu}^{+}, W_{\mu}^{-}).$
  - \*  $W_{\mu}^3 \neq Z_{\mu}^0, A_{\mu} \Rightarrow$  need for another theory: the electroweak theory.

### Outline.



### Context.



### Special relativity and gauge theories.

- Action and symmetries.
- Poincaré and Lorentz algebras and their representations.
- Relativistic wave equations.
- Gauge symmetries Yang-Mills theories symmetry breaking.



### Construction of the Standard Model.

- Quantum Electrodynamics (QED).
- Scattering theory Calculation of a squared matrix element.
- Weak interactions
- The electroweak theory.
- Quantum Chromodynamics.



### Beyond the Standard Model of particle physics.

- The Standard Model: advantages and open questions.
- Grand unified theories
- Supersymmetry.
- Extra-dimensional theories
- String theory.



# The electroweak theory (1).

- Electromagnetism and weak interactions:
  - \*  $SU(2)_I$ : what is the neutral boson  $W^3$ ?
  - \* How to get a single formalism for electromagnetic and weak interactions?
- Idea: introduction of the hypercharge Abelian group:
  - \*  $U(1)_Y$ : we have a neutral gauge boson  $B \Rightarrow B_{\mu\nu} = \partial_{\mu}B_{\nu} \partial_{\nu}B_{\mu}$ .
  - \*  $U(1)_Y$ : we have a coupling constant  $g_Y$ .
  - \*  $SU(2)_L \times U(1)_V$ :  $W^3$  and B mix to the  $Z^0$ -boson and the photon.
- Quantum numbers under the electroweak gauge group:
  - \*  $SU(2)_L$ : left-handed quarks and leptons  $\Rightarrow$  2.
  - \*  $SU(2)_L$ : right-handed quarks and leptons  $\Rightarrow 1$ .
  - \*  $U(1)_Y$ : fixed in order to reproduce the correct electric charges.

# The electroweak theory (2).

### Næther procedure leads to the following Lagrangian.

$$\begin{split} \mathcal{L}_{\mathrm{EW}} = & -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} W^{i}_{\mu\nu} W^{\mu\nu}_{i} \\ & + \sum_{f=1}^{3} \left[ \bar{L}_{f} \Big( i \gamma^{\mu} D_{\mu} \Big) L^{f} + \bar{e}_{Rf} \Big( i \gamma^{\mu} D_{\mu} \Big) e^{f}_{R} \right] \\ & + \sum_{f=1}^{3} \left[ \bar{Q}_{f} \Big( i \gamma^{\mu} D_{\mu} \Big) Q^{f} + \bar{u}_{Rf} \Big( i \gamma^{\mu} D_{\mu} \Big) u^{f}_{R} + \bar{d}_{Rf} \Big( i \gamma^{\mu} D_{\mu} \Big) d^{f}_{R} \right] \,. \end{split}$$

We have introduced the left-handed lepton and quark doublets

$$\begin{split} L^1 &= \begin{pmatrix} \Psi_{\nu_e,L} \\ \Psi_{e,L} \end{pmatrix} \ , \qquad L^2 = \begin{pmatrix} \Psi_{\nu_\mu,L} \\ \Psi_{\mu,L} \end{pmatrix} \ , \qquad L^3 = \begin{pmatrix} \Psi_{\nu_\tau,L} \\ \Psi_{\tau,L} \end{pmatrix} \ , \\ Q^1 &= \begin{pmatrix} \Psi_{u,L} \\ \Psi_{d,L} \end{pmatrix} \ , \qquad Q^2 = \begin{pmatrix} \Psi_{c,L} \\ \Psi_{s,L} \end{pmatrix} \ , \qquad Q^3 = \begin{pmatrix} \Psi_{t,L} \\ \Psi_{b,L} \end{pmatrix} \ . \end{split}$$

\* We have introduced the right-handed lepton and quark singlets

$$\begin{aligned} e_R^1 &= \Psi_{e,R} \;, & e_R^2 &= \Psi_{\mu,R} \;, & e_R^3 &= \Psi_{\tau,R} \;, \\ u_R^1 &= \Psi_{\mu,R} \;, & u_R^2 &= \Psi_{c,R} \;, & u_R^3 &= \Psi_{t,R} \;, & d_R^1 &= \Psi_{d,R} \;, & d_R^2 &= \Psi_{s,R} \;, & d_R^3 &= \Psi_{b,R} \;. \end{aligned}$$

# The electroweak theory (3).

### Noether procedure leads to the following Lagrangian.

$$\begin{split} \mathcal{L}_{\mathrm{EW}} = & -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} W^{i}_{\mu\nu} W^{\mu\nu}_{i} \\ & + \sum_{f=1}^{3} \left[ \overline{L}_{f} \Big( i \gamma^{\mu} D_{\mu} \Big) L^{f} + \overline{e}_{Rf} \Big( i \gamma^{\mu} D_{\mu} \Big) e^{f}_{R} \right] \\ & + \sum_{f=1}^{3} \left[ \overline{Q}_{f} \Big( i \gamma^{\mu} D_{\mu} \Big) Q^{f} + \overline{u}_{Rf} \Big( i \gamma^{\mu} D_{\mu} \Big) u^{f}_{R} + \overline{d}_{Rf} \Big( i \gamma^{\mu} D_{\mu} \Big) d^{f}_{R} \right] \,. \end{split}$$

The covariant derivatives are given by

$$D_{\mu} = \partial_{\mu} - i g_{Y} \mathbf{Y} B_{\mu} - i g_{w} \mathbf{T}^{\mathsf{i}} W_{\mu i}$$

- ♦ Y is the hypercharge operator (to be defined).
- $\diamond$  The representation matrices  $\mathsf{T}^\mathsf{i}$  are  $\frac{\sigma^\mathsf{i}}{2}$  and 0 for doublets and singlets.

### The neutral gauge bosons mix as

$$\begin{pmatrix} A_{\mu} \\ Z_{\mu} \end{pmatrix} = \begin{pmatrix} \cos\theta_w & \sin\theta_w \\ -\sin\theta_w & \cos\theta_w \end{pmatrix} \begin{pmatrix} B_{\mu} \\ W_{\mu}^3 \end{pmatrix} \ .$$

where the weak mixing angle  $\theta_w$  will be defined later [see below...].

### The neutral interactions (for the electron) are given by

$$\begin{split} \mathcal{L}_{\mathrm{int}} &= \bar{L}_e \gamma^\mu \Big( g_Y \, Y_{L_e} B_\mu + g_w \frac{\sigma^3}{2} \, W_{\mu 3} \Big) L_e + \bar{e}_{Rf} \gamma^\mu g_Y \, Y_{e_R} B_\mu e_{Rf} \\ &= \bar{L}_e \gamma^\mu \Big( \cos \theta_w g_Y \, Y_{L_e} + \sin \theta_w g_w \frac{\sigma^3}{2} \Big) A_\mu L_e + \bar{e}_{Rf} \gamma^\mu \cos \theta_w g_Y \, Y_{e_R} A_\mu e_{Rf} \\ &+ \bar{L}_e \gamma^\mu \Big( -\sin \theta_w g_Y \, Y_{L_e} + \cos \theta_w g_w \frac{\sigma^3}{2} \Big) Z_\mu L_e - \bar{e}_{Rf} \gamma^\mu \sin \theta_w g_Y \, Y_{e_R} Z_\mu e_{Rf} \;. \end{split}$$

To reproduce electromagnetic interactions, we need

$$\mathbf{e} = \mathbf{g}_{\mathbf{Y}} \cos \theta_{\mathbf{w}} = \mathbf{g}_{\mathbf{w}} \sin \theta_{\mathbf{w}}$$
 and  $\mathbf{Q} = \mathbf{Y} + \mathbf{T}^3$ .

This defines the hypercharge quantum numbers.

# Field content of the electroweak theory.

| F: II                                                                      | <i>SU</i> (2) <sub><i>L</i></sub> rep. | Quantum numbers               |                               |                                                      |
|----------------------------------------------------------------------------|----------------------------------------|-------------------------------|-------------------------------|------------------------------------------------------|
| Field                                                                      |                                        | Y                             | $\mathcal{T}^3$               | Q                                                    |
| $L^f = \begin{pmatrix} \Psi_{\nu_{e_f}, L} \\ \Psi_{e_f, L} \end{pmatrix}$ | 2                                      | $-\frac{1}{2}$ $-\frac{1}{2}$ | $-\frac{1}{2}$ $-\frac{1}{2}$ | 0<br>-1                                              |
| $e_R^f$                                                                    | 1                                      | -1                            | 0                             | <br>-1                                               |
| $Q^f = \begin{pmatrix} \Psi_{u_f,L} \\ \Psi_{d_f,L} \end{pmatrix}$         | 2                                      | 1/6<br>1/6                    | $-\frac{1}{2}$ $-\frac{1}{2}$ | $-\frac{2}{3}$ $-\frac{1}{3}$                        |
| $egin{array}{cccccccccccccccccccccccccccccccccccc$                         | 1                                      |                               | 0                             | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |
| $d_R^f$                                                                    | 1                                      | $-\frac{1}{3}$                | 0                             | $-\frac{1}{3}$                                       |

- The weak  $W^{\pm}$ -bosons and  $Z^0$ -bosons are observed as massive.
  - The electroweak symmetry must be broken.
  - \* The photon must stay massless.
- Breaking mechanism: we introduce a Higgs multiplet  $\varphi$ .
  - \* We need to break  $SU(2)_I \Rightarrow \varphi$  cannot be an  $SU(2)_I$ -singlet.
  - \* The  $Z^0$ -boson is massive  $\Rightarrow U(1)_Y$  must be broken  $\Rightarrow Y_{\varphi} \neq 0$ .
  - \*  $U(1)_{e.m.}$  is not broken  $\Rightarrow$  one component of  $\varphi$  is electrically neutral.
- We introduce a Higgs doublet of  $SU(2)_L$  with  $Y_{\varphi} = 1/2$ .

$$\varphi = \begin{pmatrix} h_1 \\ h_2 \end{pmatrix} \equiv \begin{pmatrix} h_1^+ \\ h_2^0 \end{pmatrix} .$$

The Higgs Lagrangian is given by .

$$\mathcal{L}_{\mathrm{Higgs}} = D_{\mu} \varphi^{\dagger} \ D^{\mu} \varphi + \mu^{2} \varphi^{\dagger} \varphi - \lambda \big( \varphi^{\dagger} \varphi \big)^{2} = D_{\mu} \varphi^{\dagger} \ D^{\mu} \varphi - V(\varphi, \varphi^{\dagger}) \ .$$

- \* The covariant derivative reads  $D_{\mu}\varphi = \left(\partial_{\mu} \frac{i}{2}g_{Y}B_{\mu} ig_{w}\frac{\sigma^{i}}{2}W_{\mu i}\right)\varphi$ .
- \* The scalar potential is required for symmetry breaking.

# Electroweak symmetry breaking (2).

lacktriangle At the minimum of the potential, the neutral component of  $\varphi$  gets a vev.

$$\langle \varphi \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} \ .$$

We select the so-called unitary gauge.

$$\varphi = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v+h \end{pmatrix} \ .$$

- \* The three Goldstone bosons have been eliminated from the equations. They have been eaten by the  $W^{\pm}$  and  $Z^{0}$  bosons to get massive.
- \* The remaining degree of freedom is the (Brout-Englert-)Higgs boson.

# Mass eigenstates - gauge boson masses (1).

### We shift the scalar field by its vev.

$$\varphi = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + h \end{pmatrix} .$$

The Higgs covariant derivative reads then:

$$D_{\mu}\varphi = \frac{1}{\sqrt{2}}\partial_{\mu}\begin{pmatrix} 0 \\ v+h \end{pmatrix} - \frac{i}{\sqrt{2}}\begin{pmatrix} \frac{\underline{g}\underline{Y}}{2}B_{\mu} + \frac{\underline{g}\underline{w}}{2}W_{\mu}^{3} & \frac{\underline{g}\underline{w}}{2}\begin{pmatrix} W_{\mu}^{1} - iW_{\mu}^{2} \end{pmatrix} \\ \frac{\underline{g}\underline{w}}{2}\begin{pmatrix} W_{\mu}^{1} + iW_{\mu}^{2} \end{pmatrix} & \frac{\underline{g}\underline{Y}}{2}B_{\mu} - \frac{\underline{g}\underline{w}}{2}W_{\mu}^{3} \end{pmatrix}\begin{pmatrix} 0 \\ v+h \end{pmatrix}.$$

• From the kinetic terms, one obtains the mass matrix, in the  $W^3-B$  basis.

$$D_{\mu} arphi^{\dagger} \ D^{\mu} arphi 
ightarrow \left( W_{\mu}^3 \quad B_{\mu} 
ight) \left( egin{array}{ccc} rac{1}{4} g_{w}^2 v^2 & -rac{1}{4} g_{Y} g_{w} v^2 \ -rac{1}{4} g_{Y}^2 v^2 & rac{1}{4} g_{Y}^2 V^2 \end{array} 
ight) \left( egin{array}{c} W_{\mu}^3 \ B_{\mu} \end{array} 
ight) \ .$$

- \* The physical states correspond to eigenvectors of the mass matrix.
- \* The mass matrix is diagonalized after the rotation

$$\begin{pmatrix} A_{\mu} \\ Z_{\mu} \end{pmatrix} = \begin{pmatrix} \cos\theta_w & \sin\theta_w \\ -\sin\theta_w & \cos\theta_w \end{pmatrix} \begin{pmatrix} B_{\mu} \\ W_{\mu}^3 \end{pmatrix} \ ,$$

with 
$$\cos^2 \theta_w = \frac{g_w^2}{g_w^2 + g_v^2}$$
.

# Mass eigenstates - gauge boson masses (2).

The mass matrix is diagonalized after the rotation

$$\begin{pmatrix} A_{\mu} \\ Z_{\mu} \end{pmatrix} = \begin{pmatrix} \cos \theta_{w} & \sin \theta_{w} \\ -\sin \theta_{w} & \cos \theta_{w} \end{pmatrix} \begin{pmatrix} B_{\mu} \\ W_{\mu}^{3} \end{pmatrix} .$$

As for the weak theory, we rotate W<sub>u</sub><sup>1</sup> and W<sub>u</sub><sup>2</sup>.

$$W_{\mu}^{\pm} = \frac{1}{2} (W_{\mu}^{1} \mp i W_{\mu}^{2}) .$$

After the two rotations, the Lagrangian reads

$$D_{\mu}\varphi^{\dagger} D^{\mu}\varphi = \frac{e^{2}v^{2}}{4\sin^{2}\theta_{w}}W_{\mu}^{+}W^{-\mu} + \frac{e^{2}v^{2}}{8\sin^{2}\theta_{w}\cos^{2}\theta_{w}}Z_{\mu}Z^{\mu} + \dots$$

- \* We obtain a  $W^{\pm}$ -boson mass term,  $m_W = \frac{eV}{2\sin\theta}$ .
- \* We obtain a  $Z^0$ -boson mass term,  $m_z = \frac{ev}{2\sin\theta \cdot \cos\theta}$ .
- \* The photon remains massless,  $m_{\gamma} = 0$ .

# Mass eigenstates - Higgs kinetic and interaction terms.

The Higgs kinetic and gauge interaction terms lead to

$$\begin{split} D_{\mu} \varphi^{\dagger} \ D^{\mu} \varphi &= \frac{1}{2} \partial_{\mu} h \partial^{\mu} h + \frac{e^{2} v^{2}}{4 \text{sin}^{2} \, \theta_{w}} W_{\mu}^{+} W^{-\mu} + \frac{e^{2} v^{2}}{8 \text{sin}^{2} \, \theta_{w} \text{cos}^{2} \, \theta_{w}} Z_{\mu} Z^{\mu} \\ &+ \frac{e^{2} v}{2 \text{sin}^{2} \, \theta_{w}} W_{\mu}^{+} W^{-\mu} h + \frac{e^{2} v}{4 \text{sin}^{2} \, \theta_{w} \text{cos}^{2} \, \theta_{w}} Z_{\mu} Z^{\mu} h \\ &+ \frac{e^{2}}{4 \text{sin}^{2} \, \theta_{w}} W_{\mu}^{+} W^{-\mu} h h + \frac{e^{2}}{8 \text{sin}^{2} \, \theta_{w} \text{cos}^{2} \, \theta_{w}} Z_{\mu} Z^{\mu} h h \; . \end{split}$$

- \* We obtain gauge boson mass terms.
- \* We obtain a Higgs kinetic term.
- We obtain trilinear interaction terms.
- \* We obtain quartic interaction terms.
- Remark: no interaction between the Higgs boson and the photon.

# Mass eigenstates - fermion masses (1).

The fermion masses are obtained from the Yukawa interactions.

$$\mathcal{L}_{\mathrm{Yuk}} = -\bar{u}_R y_u \big( Q \cdot \varphi \big) - \bar{d}_R y_d \big( \varphi^\dagger \, Q \big) - \bar{e}_R y_e \big( \varphi^\dagger L \big) + \mathrm{h.c.}$$

- \* We have introduced the SU(2) invariant product  $A \cdot B = A_1B_2 A_2B_1$ .
- \* Flavor (or generation) indices are understood:

$$\bar{d}_R y_d \left( \varphi^{\dagger} Q \right) \equiv \sum_{f,f'=1}^{3} \bar{d}_{Rf'} \left( y_d \right)^{f'}{}_{f} \left( \varphi^{\dagger} Q^f \right)$$

- The Lagrangian terms are matrix products in flavor space.
- The mass matrices read

$$\mathcal{L}_{\rm mass} = -\frac{v}{\sqrt{2}} \bar{u}_R y_u u_L - \frac{v}{\sqrt{2}} \bar{d}_R y_d d_L - \frac{v}{\sqrt{2}} \bar{e}_R y_e e_L + {\rm h.c.} \; , \label{eq:mass_loss}$$

where we have performed the shift  $\varphi = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + h \end{pmatrix}$ , and introduced  $u_t^f = \Psi_{u_t}$ , ....

# Mass eigenstates - fermion masses (2).

The fermion mass Lagrangian read:

$$\mathcal{L}_{\rm mass} = -\frac{v}{\sqrt{2}} \bar{u}_R y_u u_L - \frac{v}{\sqrt{2}} \bar{d}_R y_d d_L - \frac{v}{\sqrt{2}} \bar{e}_R y_e e_L + {\rm h.c.} \; . \label{eq:loss_mass}$$

- \* The physical states correspond to eigenvectors of the mass matrices.
- \* Diagonalization: any complex matrix fulfill

$$y = V_R \ \tilde{y} \ U_I^{\dagger} \ ,$$

with  $\tilde{y}$  real and diagonal and  $U_I$ ,  $V_R$  unitary.

Diagonalization of the fermion sector: we got replacement rules,

$$u_L = \begin{pmatrix} u_L \\ c_L \\ t_L \end{pmatrix} \to U_L^u u_L' , \qquad \bar{u}_R = \begin{pmatrix} \bar{u}_R & \bar{c}_R & \bar{t}_R \end{pmatrix} \to \bar{u}_R' (V_R^u)^{\dagger} , \qquad \dots$$

\* The up-type quark mass terms become

$$-\frac{v}{\sqrt{2}}\bar{\mathbf{u}}_{R}\mathbf{y}_{u}\mathbf{u}_{L}\rightarrow-\frac{v}{\sqrt{2}}\left[\bar{\mathbf{u}}_{R}'(\mathbf{V}_{R}^{u})^{\dagger}\right]\left[\mathbf{V}_{R}^{u}\tilde{\mathbf{y}}_{u}(\mathbf{U}_{L}^{u})^{\dagger}\right]\left[\mathbf{U}_{L}^{u}\mathbf{u}_{L}'\right]=-\frac{v}{\sqrt{2}}\bar{\mathbf{u}}_{R}'\tilde{\mathbf{y}}_{u}\mathbf{u}_{L}'$$

where  $u_L, u_R$  are gauge-eigenstates and  $u_I', u_R'$  mass-eigenstates.

# Mass eigenstates - flavor and *CP* violation.

• The neutral interactions are still diagonal in flavor space, e.g.,

$$\mathcal{L}_{\mathrm{int}} = \frac{2}{3} \text{ e } \overline{\textbf{\textit{u}}}_{L} \gamma^{\mu} A_{\mu} \textbf{\textit{u}}_{L} \rightarrow \frac{2}{3} \text{ e } \left[ \overline{\textbf{\textit{u}}}_{L}^{\prime} (\textbf{\textit{U}}_{L}^{u})^{\dagger} \right] \gamma^{\mu} A_{\mu} \left[ \textbf{\textit{U}}_{L}^{u} \textbf{\textit{u}}_{L}^{\prime} \right] = \frac{2}{3} \text{ e } \overline{\textbf{\textit{u}}}_{L}^{\prime} \gamma^{\mu} A_{\mu} \textbf{\textit{u}}_{L}^{\prime} \; .$$

due to unitarity of  $U_{i}^{u}$ .

• The charged interactions are now non-diagonal in flavor space, e.g.,

$$\begin{split} \mathcal{L}_{\mathrm{int}} &= \frac{e}{\sqrt{2} \mathrm{sin} \, \theta_w} \overline{\mathbf{u}}_L \gamma^\mu W_\mu^+ \mathbf{d}_L \to \frac{e}{\sqrt{2} \mathrm{sin} \, \theta_w} \left[ \overline{\mathbf{u}}_L' (U_L^u)^\dagger \right] \gamma^\mu W_\mu^+ \left[ U_L^d \mathbf{d}_L' \right] \\ &= \frac{e}{\sqrt{2} \mathrm{sin} \, \theta_w} \overline{\mathbf{u}}_L' \left[ (U_L^u)^\dagger U_L^d \right] \gamma^\mu W_\mu^+ \mathbf{d}_L' \;. \end{split}$$

Charged current interactions become proportionnal to the CKM matrix,

$$V_{CKM} = (U_I^u)^{\dagger} U_I^d$$
 [Nobel prize, 2008].

\* One phase and three angles to parameterize a unitary 3 × 3 matrix. ⇒ Flavor and CP violation in the Standard Model.

# Summary - The electroweak theory.

### The electroweak theory.

- Based on the  $SU(2)_L \times U(1)_Y$  gauge group.
  - \*  $SU(2)_l$ : weak interactions, three  $W^i$ -bosons acting on left-handed fermions and on the Higgs field.
  - \*  $U(1)_Y$ : hypercharge interactions, one B-bosons acting on both leftand right-handed fermions and on the Higgs field.
- The gauge group is broken to  $U(1)_{e,m}$ .
  - \* The neutral component of the Higgs doublet gets a vev.
  - \* Hypercharge quantum numbers are chosen consistently.  $\Rightarrow$  The fields get the correct electric charge ( $Q = T^3 + Y$ ).
  - \*  $W^1$  and  $W^2$  bosons mix to  $W^{\pm}$ .
  - \* B and  $W^3$  bosons mix to  $Z^0$  and  $\gamma$ .
- Yukawa interactions with the Higgs field lead to fermion masses.
- Experimental challenge: the discovery of the Higgs boson.



### Context.



- Special relativity and gauge theories.
- Action and symmetries.
- Poincaré and Lorentz algebras and their representations.
- Relativistic wave equations.
- Gauge symmetries Yang-Mills theories symmetry breaking.



### Construction of the Standard Model.

- Quantum Electrodynamics (QED).
- Scattering theory Calculation of a squared matrix element.
- Weak interactions
- The electroweak theory.
- Quantum Chromodynamics.



### Beyond the Standard Model of particle physics.

- The Standard Model: advantages and open questions.
- Grand unified theories
- Supersymmetry.
- Extra-dimensional theories
- String theory.



- Discovery of the color quantum numbers. [Barnes et al. (1964)]
  - \* The predicted  $|\Omega\rangle = |sss\rangle$  baryon is a spin 3/2 particle.
  - \* The  $|\Omega\rangle$  wave function is **fully symmetric** (spin + flavor).
  - \* This contradicts the spin-statistics theorem.

Introduction of the color quantum number.

- The  $SU(3)_c$  gauge group.
  - \* Observed particles are color neutral.
  - \* The minimal way to write an antisymmetric wave function for  $|\Omega\rangle$  is

$$|\Omega\rangle = \epsilon_{mn\ell} |s^m s^n s^\ell\rangle$$
.

\* The quarks lie thus in a 3 of the new gauge group  $\Rightarrow SU(3)_c$ .

# Field content of the Standard Model and representation.

| Field           | $SU(3)_c$ rep. | $SU(2)_L$ rep. | $U(1)_Y$ charge |
|-----------------|----------------|----------------|-----------------|
| $L_f$           | 1              | 2              | $-\frac{1}{2}$  |
| e <sub>Rf</sub> | 1              | 1              | -1              |
| $Q_f$           | 3              | 2              | <u>1</u> 6      |
| u <sub>Rf</sub> | 3              | 1              | $\frac{2}{3}$   |
| $d_{Rf}$        | 3              | 1              | $-\frac{1}{3}$  |
| $\varphi$       | 1              | 2              | $\frac{1}{2}$   |
| В               | 1              | 1              | 0               |
| l w             | 1              | 3              | 0               |
| g               | 8              | 1              | 0               |

The matter Lagrangian involves the covariant derivative

$$D_{\mu} = \partial_{\mu} - i g_{Y} Y B_{\mu} - i g_{w} T^{i} W_{\mu}^{i} - i g_{s} T^{a} g_{\mu}^{a} .$$

- We introduce a kinetic term for each gauge boson.
- The Higgs potential and Yukawa interactions are as in the electroweak theory.

# QCD factorization theorem (1)

- Quarks and gluons are not seen in nature due to confinement.
- In a hadron collision at high energy, they can however interact.
- Predictions can be made thanks to the QCD factorization theorem.

$$\sigma_{\rm hadr} = \sum_{ab} \int \mathrm{d}x_a \, \mathrm{d}x_b \, f_{a/A}(x_a; \mu_F) \, f_{b/B}(x_b; \mu_F) \frac{\mathrm{d}\sigma_{\rm part}}{\mathrm{d}\omega}(x_a, x_b, p_a, p_b, \dots, \mu_F)$$

where  $\sigma_{\rm hadr}$  is the hadronic cross section (hadrons  $\rightarrow$  any final state).

- \*  $\sum_{ab} \Rightarrow \text{all partonic initial states (partons } a, b = q, \bar{q}, g).$
- \*  $x_a$  is the momentum fraction of the hadron A carried by the parton a.
- \*  $x_b$  is the momentum fraction of the hadron B carried by the parton b.
- \* If the final state contains any parton: Fragmentation functions (from partons to observable hadrons).

# QCD factorization theorem (2)

Predictions can be made thanks to the QCD factorization theorem.

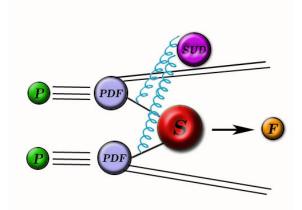
$$\sigma_{\rm hadr} = \sum_{ab} \int \mathrm{d}x_a \, \mathrm{d}x_b \, f_{a/A}(x_a;\mu_F) \, f_{b/B}(x_b;\mu_F) \frac{\mathrm{d}\sigma_{\rm part}}{\mathrm{d}\omega} (x_a,x_b,p_a,p_b,\dots,\mu_F)$$

- \*  $f_{a/p_1}(x_a; \mu_F), f_{b/p_2}(x_b; \mu_F)$ : parton densities.
  - Long distance physics.
  - $\diamond$  'Probability' to have a parton with a momentum fraction x in a hadron
- \*  $d\sigma_{part}$ : differential partonic cross section (which you can now calculate).
  - Short distance physics.

 $\mu_F$  - Factorization scale. (how to distinguish long and short distance physics).

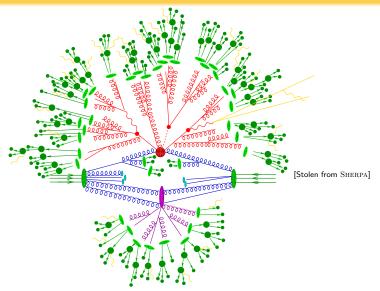
# Parton showering and hadronization

At high energy, initial and final state partons radiate other partons.



Finally, very low energy partons hadronize.

# Summary - The real life of a collision at the LHC



# Outline.





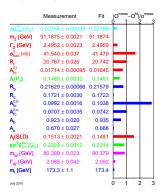
- Action and symmetries.
- Poincaré and Lorentz algebras and their representations.
- Relativistic wave equations.
- Gauge symmetries Yang-Mills theories symmetry breaking.



- Quantum Electrodynamics (QED).
- Scattering theory Calculation of a squared matrix element.
- Weak interactions
- The electroweak theory.
- Quantum Chromodynamics.
- Beyond the Standard Model of particle physics.
  - The Standard Model: advantages and open questions.
  - Grand unified theories
  - Supersymmetry.
  - Extra-dimensional theories
  - String theory.

# The Standard Model: advantages and open questions (1).

- The Standard Model of particle physics.
  - Is a mathematically consistent theory.
  - Is compatible with (almost) all experimental results [e.g., LEP EWWG].



Beyond the Standard Model •0000000000

### Open questions.

- \* Why are there three families of quarks and leptons?
- \* Why does one family consist of {Q, u<sub>R</sub>, d<sub>R</sub>; L, e<sub>r</sub>}?
- \* Why is the electric charge quantized?
- \* Why is the local gauge group  $SU(3)_c \times SU(2)_L \times U(1)_Y$ ?
- \* Why is the spacetime **four-dimensional**?
- \* Why is there **26 free parameters**?
- \* What is the origin of quark and lepton masses and mixings?
- \* What is the origin of CP violation?
- \* What is the origin of matter-antimatter asymmetry?
- \* What is the nature of dark matter?
- \* What is the role of gravity?
- \* Why is the electroweak scale (100 GeV) much lower than the Planck scale  $(10^{19} \text{ GeV})$ ?

## Outline.



### Context.



### Special relativity and gauge theories.

- Action and symmetries.
- Poincaré and Lorentz algebras and their representations.
- Relativistic wave equations.
- Gauge symmetries Yang-Mills theories symmetry breaking.



### Construction of the Standard Model.

- Quantum Electrodynamics (QED).
- Scattering theory Calculation of a squared matrix element.
- Weak interactions
- The electroweak theory.
- Quantum Chromodynamics.



### Beyond the Standard Model of particle physics.

- The Standard Model: advantages and open questions.
- Grand unified theories
- Supersymmetry.
- Extra-dimensional theories
- String theory.



# Grand Unified Theories: a unified gauge group (1).

- Can we reduce the arbitrariness in the Standard Model?
  - A single direct factor for the gauge group.
  - \* A common representation for quarks and leptons.
  - \* Unification of  $g_Y$ ,  $g_W$  and  $g_S$  to a single coupling constant.
- Unification of the Standard Model coupling constants.
  - \* The coupling constants (at zero energy) are highly different.

| Electromagnetism | Weak        | Strong   |
|------------------|-------------|----------|
| $\sim 1/137$     | $\sim 1/30$ | $\sim 1$ |

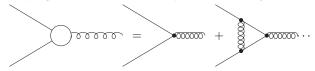
The coupling strengths depend on the energy due to quantum corrections.

- There exists a unification scale
- The coupling strengths are identical.

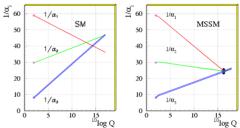
Beyond the Standard Model 0.000000000

# Grand Unified Theories: a unified gauge group (2).

- Running of the coupling constants.
  - The coupling constant at first order of perturbation theory reads



These calculations lead to the energy dependence of the couplings.



Unification requires additional matter (e.g., supersymmetry [see below...]).

# Grand Unified Theories: a unified gauge group (3).

- How to choose of a grand unified gauge group.
  - \* We want to pick up G so that  $SU(3)_c \times SU(2)_L \times U(1)_Y \subset G$ .
  - \* Electromagnetism must not be broken.
  - \* The Standard Model must be reproduced at low energy.
  - \* Matter must be chiral.
  - \* Interesting cases are:

$$G = \begin{cases} SU(N) & \text{with } N > 4\\ SO(4N+2) & \text{with } N \ge 2\\ E_6 & \end{cases}$$

- How to specify representations for the matter fields.
  - \* The Standard Model must be reproduced at low energy.
  - \* The choice for the Higgs fields ⇔ breaking mechanism.
- Specify the Lagrangian.

$$\mathcal{L}_{\rm GUT} = \mathcal{L}_{\rm kin} + \mathcal{L}_{\rm gauge} + \mathcal{L}_{\rm Yuk} + \mathcal{L}_{\rm breaking} \ . \label{eq:LGUT}$$

$$\mathcal{L}_{\rm GUT} = \mathcal{L}_{\rm kin} + \mathcal{L}_{\rm gauge} + \mathcal{L}_{\rm Yuk} + \mathcal{L}_{\rm breaking} \ .$$

- \*  $\mathcal{L}_{kin}$ : Poincaré invariance.
- \*  $\mathcal{L}_{kin} + \mathcal{L}_{gauge}$ : gauge invariance.
- \*  $\mathcal{L}_{Yuk}$ : Yukawa interactions between Higgs bosons and fermions.
  - ♦ Must be gauge-invariant.
  - ♦ Fermion masses after symmetry breaking.
  - ⋄ Flavor and CP violation.
  - ♦ Not obtained (in general) from symmetry principles.
- \*  $\mathcal{L}_{\mathrm{breaking}}$ : less known...

# Grand Unified Theories: example of SU(5) (1).

### Gauge bosons

\* A 5  $\times$  5 matrix contains naturally SU(3) and SU(2).

$$\begin{pmatrix} SU(3) & LQ \\ LQ^{\dagger} & SU(2) \end{pmatrix} \in SU(5)$$

- \* We have 12 additional gauge bosons, the so-called leptoquarks (LQ).
- \* The matrix is traceless.
  - $\sim$  The hypercharge is quantized.
  - $\sim$  The electric charge is quantized ( $Q = T^3 + Y$ ).

\* This matches the quantum numbers of the right-handed down antiquark  $d_D^c$  and the left-handed lepton doublet L.

# Grand Unified Theories: example of SU(5) (2).

#### Fermions

- \* Fundamental representation of SU(5):  $d_R^c$  and L.
- \* 10 representation (antisymmetric matrix) ≡ 10 degrees of freedom. 

  → the rest of the matter fields (10 degrees of freedom).

$$\mathbf{5} \equiv \begin{pmatrix} d_{R}^{c} \\ L \end{pmatrix} = \begin{pmatrix} (d_{R}^{c})_{r} \\ (d_{R}^{c})_{g} \\ (d_{R}^{c})_{b} \\ \nu_{L} \\ e_{L} \end{pmatrix} \qquad \mathbf{10} \equiv \begin{pmatrix} 0 & (u_{R}^{c})_{b} & -(u_{L}^{c})_{g} & -(u_{L})_{r} & -(d_{L})_{r} \\ -(u_{R}^{c})_{b} & 0 & (u_{R}^{c})_{r} & -(u_{L})_{g} & -(d_{L})_{g} \\ (u_{R}^{c})_{g} & -(u_{R}^{c})_{r} & 0 & -(u_{L})_{b} & -(d_{L})_{b} \\ (u_{L})_{r} & (u_{L})_{g} & (u_{L})_{b} & 0 & -e_{R}^{c} \\ (d_{L})_{r} & (d_{L})_{g} & (d_{L})_{b} & e_{R}^{c} & 0 \end{pmatrix}$$

- \* The embedding of the gauge boson into SU(5) is easy.
- \* The embedding of the fermion sector is miraculous.

# Grand Unified Theories: example of SU(5) (3).

### Higgs sector

- Two Higgs fields are needed.
  - $\diamond$  One to break  $SU(5) \rightarrow SU(3)_c \times SU(2)_t \times U(1)_V$ .
  - $\diamond$  One to break  $SU(3)_c \times SU(2)_L \times U(1)_Y \rightarrow SU(3)_c \times U(1)_{e.m.}$
- \* The simplest choice.
  - $\diamond$  One field in the 24 representation (special unitary  $5 \times 5$  matrix).
  - One field in the fundamental representation.
- Advantages of SU(5)
  - \* Unification of all the interactions within a simple gauge group.
  - \* Partial unification of the matter within two multiplets.
  - \* Electric charge quantization.
- Problems specific to SU(5)
  - \* Prediction of the **proton decay** (lifetime:  $10^{31} 10^{33}$  years).
  - \* Prediction of a magnetic monopole.
  - \* Other problems shared with the Standard Model (three families, etc.)

Beyond the Standard Model 0000000000

# Grand Unified Theories: SO(10), $E_6$ .

#### Matter content.

- \* The matter is unified within a single multiplet.
- \* SO(10) has an additional degree of freedom  $\Rightarrow$  the right-handed neutrino
- \* Explanation for the neutrino masses.
- \* E6 contains several additional degrees of freedom ⇒ the right-handed neutrino plus new particles (to be discovered...)
- The breaking mechanism leads to additional U(1) symmetrie(s).
  - \* The gauge boson(s) associated to these new U(1) are called Z' bosons.
  - \* Massive Z' resonances are searched at colliders [see exercises classes].

$$pp \rightarrow \gamma, Z, Z' + X \rightarrow e^+e^- + X \text{ or } \mu^+\mu^- + X$$
.

- Other specific advantages and problems.
  - \* E<sub>6</sub> appears naturally in string theories.
  - \* There is still no explanation for, e.g., the number of families.
  - \* Gauge coupling unification is impossible without additional matter  $\Rightarrow e.g.$ , supersymmetry.

# Summary - Grand Unified Theories.

#### Grand Unified Theories.

- The Standard model gauge group,  $SU(3)_c \times SU(2)_L \times U(1)_Y$ , is embedded in a unified gauge group.
- Common representations are used for quarks and leptons.
- The Standard Model is reproduced at low energy.
- More or less complicated breaking mechanism.
- Examples: SU(5), SO(10),  $E_6$ , ....

### Outline.



### Context.



### Special relativity and gauge theories.

- Action and symmetries.
- Poincaré and Lorentz algebras and their representations.
- Relativistic wave equations.
- Gauge symmetries Yang-Mills theories symmetry breaking.



### Construction of the Standard Model.

- Quantum Electrodynamics (QED).
- Scattering theory Calculation of a squared matrix element.
- Weak interactions
- The electroweak theory.
- Quantum Chromodynamics.



### Beyond the Standard Model of particle physics.

- The Standard Model: advantages and open questions.
- Grand unified theories
- Supersymmetry.
- Extra-dimensional theories
- String theory.
- Summary.

Beyond the Standard Model 0000000000

## Supersymmetry: Poincaré superalgebra (1).

# Invariant Lagrangians Symmetries

**↓** Fock spaces

Noether theorem

Conserved charges

**↓** Quantization

Hilbert space

Representations

Symmetry generators

- Ingredients leading to superalgebra/supersymmetry.
  - \* We have two types of particles, fermions and bosons.
    - $\Rightarrow$  We have two types of conserved charges, B and F.
  - \* The composition of two symmetries is a symmetry.
    - ⇒ This imposes relations between the conserved charges.

$$\begin{split} \left[B_a,B_b\right] &= if_{ab}{}^cB_c \ , \\ \left[B_a,F_i\right] &= R_{ai}{}^bB_b \ , \\ \left\{F_i,F_j\right\} &= Q_{ij}{}^aB_a \ , \end{split}$$

### bersymmetry: Poincare superaigebra (2).

- The Coleman-Mandula theorem (1967).
  - \* The symmetry generators are assumed bosonic.
  - \* The only possible symmetry group in Nature is

$$G = Poincaré \times gauge symmetries$$
.

♦ Spacetime symmetries: Poincaré

$$\begin{split} \left[ L^{\mu\nu}, L^{\rho\sigma} \right] &= -i \Big( \eta^{\nu\sigma} L^{\rho\mu} - \eta^{\mu\sigma} L^{\rho\nu} + \eta^{\nu\rho} L^{\mu\sigma} - \eta^{\mu\rho} L^{\nu\sigma} \Big) \;, \\ \left[ L^{\mu\nu}, P^{\rho} \right] &= -i \Big( \eta^{\nu\rho} P^{\mu} - \eta^{\mu\rho} P^{\nu} \Big) \;, \\ \left[ P^{\mu}, P^{\nu} \right] &= 0 \;, \end{split}$$

⋄ Internal gauge symmetries: compact Lie algebra.

$$\left[T_a,T_b\right]=if_{ab}{}^cT_c.$$

- The Haag-Łopuszański-Sohnius theorem (1975).
  - \* Extension of the Coleman-Mandula theorem.
  - Fermionic generators are included.
  - \* The minimal choice consists in a set of Majorana spinors  $(Q, \overline{Q})$ .
  - \* N = 1 supersymmetry: one single supercharge Q.

## Supersymmetry: Poincaré superalgebra (3).

#### The Poincaré superalgebra.

Spacetime symmetries.

$$\begin{split} & \left[ \mathbf{L}^{\mu\nu}, \mathbf{L}^{\rho\sigma} \right] \! = \! -i \left( \eta^{\nu\sigma} \mathbf{L}^{\rho\mu} \! - \! \eta^{\mu\sigma} \mathbf{L}^{\rho\nu} \! + \! \eta^{\nu\rho} \mathbf{L}^{\mu\sigma} \! - \! \eta^{\mu\rho} \mathbf{L}^{\nu\sigma} \right) \; , \\ & \left[ \mathbf{L}^{\mu\nu}, P^{\rho} \right] \! = \! -i \left( \eta^{\nu\rho} P^{\mu} \! - \! \eta^{\mu\rho} P^{\nu} \right) \; , \qquad \left[ P^{\mu}, P^{\nu} \right] \! = \! 0 \; , \end{split}$$

Gauge symmetries

$$\left[T_a,T_b\right]\!=\!if_{ab}{}^c\,T_c\ .$$

Supersymmetry.

$$\begin{split} & \left[L^{\mu\nu},Q_{\alpha}\right] = \left(\sigma^{\mu\nu}\right)_{\alpha}{}^{\beta}\,Q_{\beta} \qquad \quad Q \text{ is a left-handed spinor }, \\ & \left[L^{\mu\nu},\overline{Q}^{\dot{\alpha}}\right] = \left(\bar{\sigma}^{\mu\nu}\right)^{\dot{\alpha}}{}_{\dot{\beta}}\,\overline{Q}^{\dot{\beta}} \qquad \quad \overline{Q} \text{ is a right-handed spinor }, \\ & \left[Q_{\alpha},P^{\mu}\right] = \left[\overline{Q}^{\dot{\alpha}},P^{\mu}\right] = 0 \ , \\ & \left\{Q_{\alpha},\overline{Q}_{\dot{\alpha}}\right\} = 2\sigma^{\mu}{}_{\alpha\dot{\alpha}}P_{\mu} \ , \qquad \left\{Q_{\alpha},Q^{\beta}\right\} = \left\{\overline{Q}^{\dot{\alpha}},\overline{Q}^{\dot{\beta}}\right\} = 0 \ , \\ & \left[Q_{\alpha},T_{a}\right] = \left[Q_{\dot{\alpha}},T_{a}\right] = 0 \qquad \quad (Q,\overline{Q}) \text{ is a gauge singlet }. \end{split}$$

## Supersymmetry: Poincaré superalgebra (4).

#### Consequences and advantages.

\* The supercharge operators change the spin of the fields.

$$Q|\mathsf{boson}\rangle = |\mathsf{fermion}\rangle$$
 and  $Q|\mathsf{fermion}\rangle = |\mathsf{boson}\rangle$ .

\* (Q, Q) and P commute.
 ⇒ fermions and bosons in a same multiplet have the same mass.

$$P^2|\mathsf{boson}\rangle = m^2|\mathsf{boson}\rangle$$
 and  $P^2|\mathsf{fermion}\rangle = m^2|\mathsf{fermion}\rangle$ .

\* The composition of two supersymmetry operations is a translation.

$$Q\overline{Q} + \overline{Q}Q \sim P$$
.

- \* It includes naturally gravity
   ⇒ New vision of spacetime ⇒ supergravity, superstrings.
- \* Unification of the gauge coupling constants.

### Supersymmetry breaking

- No supersymmetry discovery until now.
  - \* No scalar electron has been discovered.
  - \* No massless photino has been observed.
  - \* etc..

Supersymmetry has to be broken.

- Supersymmetry breaking.
  - \* Superparticle masses shifted to a higher scale.
  - \* Breaking mechanism not fully satisfactory.
  - \* Assumed to occur in a hidden sector.
  - \* Mediated through the visible sector via a given interaction.
  - \* Examples: minimal supergravity, gauge-mediated supersymmetry-breaking, etc..

#### Field content

- One single supercharge.
- \* We associate one superpartner to each Standard Model field.
  - \* Quarks ⇔ squarks.
  - Leptons ⇔ sleptons.
  - \* Gauge/Higgs bosons ⇔ gauginos/higgsinos.
- We introduce an new quantum number, the *R*-parity.
  - Standard Model fields: R = +1.
  - \* Superpartners: R = -1.
  - The lightest superpartner (LSP) is stable.
    - ⇒ Cosomology: must be neutral and color singlet.
    - ⇒ Possible dark matter candidate.
  - \* Superparticles are produced in pairs.
    - ⇒ Cascade-decays to the LSP.
    - ⇒ Missing energy collider signature.

Beyond the Standard Model 0000000000

- Extension of the Poincaré algebra to the Poincaré superalgebra.
- Introduction of supercharges.
- The Minimal Supersymmetric Standard Model: one single supercharge.
  - One superpartner for each Standard Model field.
  - \* Possible dark matter candidate
  - \* Collider signatures with large missing energy.
- More or less complicated breaking mechanism.

### Outline.



### Context.



#### Special relativity and gauge theories.

- Action and symmetries.
- Poincaré and Lorentz algebras and their representations.
- Relativistic wave equations.
- Gauge symmetries Yang-Mills theories symmetry breaking.



#### Construction of the Standard Model.

- Quantum Electrodynamics (QED).
- Scattering theory Calculation of a squared matrix element.
- Weak interactions
- The electroweak theory.
- Quantum Chromodynamics.



### Beyond the Standard Model of particle physics.

- The Standard Model: advantages and open questions.
- Grand unified theories
- Supersymmetry.
- Extra-dimensional theories
- String theory.
- Summary.

Beyond the Standard Model 00000000000

### Extra-dimensions in a nutshell (1).

- Main idea: the spacetime is not four-dimensional.
- Example: five dimensional scenario: R<sup>4</sup>×circle of radius R.
  - \* The fifth dimension is periodic.
  - \* Massless 5D-fields ⇒ tower of 4D-fields.

$$\phi(x^{\mu}, y) = \sum_{n} \phi_{n}(x^{\mu}) \exp\left[\frac{iny}{R}\right] ,$$

where y is the fifth-dimension corrdinate.

- \* The 4D-fields  $\phi_n$  are massive. Case of the scalar fields:
  - ♦ We start from the Klein-Gordon equation in 5D

$$\bigcirc \phi(x^{\mu}, y) = \left[\Box - \partial_y^2\right] \phi(x^{\mu}, y) \Longrightarrow \left[\Box + \frac{n^2}{R^2}\right] \phi_n(x^{\mu}) = 0$$

\* No observation of a Kaluza-Klein excitation  $(\phi_n) \Rightarrow 1/R$  must be large.

### Extra-dimensions in a nutshell (2).

- Kaluza-Klein and unification
  - \* Basic idea: unification of electromagnetism and gravity (20's).
  - \* The 5D metric reads, with M, N = 0, 1, 2, 3, 4

$$g_{MN} \sim egin{pmatrix} g_{\mu 
u} & A_{\mu} = g_{\mu 4} \ A_{\mu} = g_{4 \mu} & \phi = g_{4 4} \end{pmatrix} \; .$$

- 5D gravity → 4D electromagnetism and gravity.
- Extension to all interactions.
  - \* The Standard Model needs 11 dimensions [Witten (1981)].
  - \* Problems with the mirror fermions
- One possible viable model: Randall-Sundrum (1999).
  - \* The Standard Model fields lie on a three-brane (a 4D spacetime).
  - \* Gravity lies in the bulk (all the 5D space).
  - \* The size of the extradimensions can be large (TeV scale).
  - \* KK-parity: dark matter candidate, missing energy signature, etc.
- Other viable models are possible (universal extra-dimensions, etc.).



### Context.



#### Special relativity and gauge theories.

- Action and symmetries.
- Poincaré and Lorentz algebras and their representations.
- Relativistic wave equations.
- Gauge symmetries Yang-Mills theories symmetry breaking.



#### Construction of the Standard Model.

- Quantum Electrodynamics (QED).
- Scattering theory Calculation of a squared matrix element.
- Weak interactions
- The electroweak theory.
- Quantum Chromodynamics.



### Beyond the Standard Model of particle physics.

- The Standard Model: advantages and open questions.
- Grand unified theories
- Supersymmetry.
- Extra-dimensional theories
- String theory.



Beyond the Standard Model 0000000000

- Point-like particles ⇒ closed and/or open 1D-strings.
- String propagation in spacetime ⇒ a surface called a worldsheet.
- The vibrations of the string ⇒ elementary particles.
- Worldsheet physics ⇒ spacetime physics (quantum consistency).
  - \* 10-dimensional spacetime (extradimensions).
    - \* Extended gauge group (Grand Unified Theories).
  - \* Supergravity (supersymmetry).
- Compactification from 10D to 4D.
  - \* Must reproduce the Standard Model.
  - \* Many possible solutions.
  - \* No solution found so that all experimental constraints are satisfied.

### Outline.



- Action and symmetries.
- Poincaré and Lorentz algebras and their representations.
- Relativistic wave equations.
- Gauge symmetries Yang-Mills theories symmetry breaking.



- Quantum Electrodynamics (QED).
- Scattering theory Calculation of a squared matrix element.
- Weak interactions
- The electroweak theory.
- Quantum Chromodynamics.



- The Standard Model: advantages and open questions.
- Grand unified theories
- Supersymmetry.
- Extra-dimensional theories
- String theory.



### Summary.

- The Standard Model has been constructed from experimental input.
  - \* Based on symmetry principle (relativity, gauge invariance).
  - \* Is consistent with quantum mechanics.
  - \* Is the most tested theory of all time.
  - \* Suffers from some limitations and open questions.
- Beyond the Standard Model theories are built from theoretical ideas.
  - \* Ideas in constant evolution.
  - \* Grand Unified Theories
  - Supersymmetry.
  - \* Extra-dimensions
  - \* String theory.
  - \* etc..