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OUTLINE

• Introduction on neutrinos:

• What is a neutrino?

• Neutrino sources and fluxes.

• Interactions and detection techniques.

• Neutrino oscillations:

• Phenomena of oscillation.

• Vacuum Vs. matter.

• Neutrino experiments:

• Experimental evidences.

• Conclusions
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WHAT IS A NEUTRINO?
• The neutrino is a particle “invented” by Pauli in 1930 in order to conserve the energy and the 

momentum in β decays. 

2-body decay therefore
the positron energy is fixed

at the Q value of the reaction

β- decay (before 1930)

 n → p + e 

Example of observed spectrum

≠

β- decay (after 1930)

 n → p + e + ν

Analytical calculation

4

Q value

In 1930 β- decay was the decay 
of an atomic nucleus (not 

known to contain or involve 
the neutron at the time)
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WHAT IS A NEUTRINO?
• The neutrino is a particle “invented” by Pauli in 1930 in order to conserve the energy and the 

momentum in β decays. 

• This particle was observed for the first time by Cowan and Reines in 1956.

The interaction probability (cross section) is 
very low (order of 10-38 cm2 at 1 GeV).

Every day 4 x 1019 ν pass through our body and 
on average only 1 interacts in our life

Why did it take that long?

5



A.Meregaglia 

WHAT IS A NEUTRINO?

• In 2000 the last neutrino (ντ) foreseen in the 
Standard Model (SM) has been observed. 

• Neutrinos have been assumed to be massless 
in the Standard Model, however strong 
evidences point to small but non zero values of 
the neutrino masses.

• The neutrino is a particle “invented” by Pauli in 1930 in order to conserve the energy and the 
momentum in β decays. 

• This particle was observed for the first time by Cowan e Reines in 1956.

• In 1962 it was discovered that neutrinos exist in (3) different flavours.
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In this lecture we will discuss neutrino 
masses related to oscillations.

For a discussion on Dirac Vs Majorana 
and absolute masses see lecture by 

G.Drexlin.
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NEUTRINO SOURCES
• There are many sources of neutrinos: they can be divided into natural (sun, natural radioactivity, 

etc.) and human-made (accelerators and reactors).
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Solar ν
6 x 1010 νs -1cm-2

on earth 

Atmospheric ν 
1 νs -1cm-2 

on earth

Supernova ν Big Bang ν
(330 νcm-3 )

Accelerator ν
Reactor ν
1021 νs -1

produced
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NEUTRINO INTERACTION
• Neutrinos are subject only to weak interaction.

• The interaction is therefore given by the exchange of a W boson (charge current interaction)  
or a Z boson (neutral current interaction).
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• The interactions can be described using some kinematical variables:

4-momentum transferred

hadronic invariant mass

6.1. νµ DISAPPEARANCE 71

4-momentum transferred Q and the invariant mass W :

Q2 = 4EνEµ sin2(θ/2) (6.3)

W 2 + Q2 = 2Mν + M2 (6.4)

where M is the nucleon mass, θ is the angle between the incoming neutrino and the
outgoing muon, and ν is the transferred energy (ν = Ehad − M = Eν − Eµ).

The idea is to fit the reconstructed invariant mass distribution with distributions
obtained from exclusive (i.e. either QE or non-QE events) MC samples. Of course,
the first issue is a good resolution on the invariant mass reconstruction, which is strongly
correlated to a good neutrino energy reconstruction as it can be seen in Eq. 6.3.

Studies on energy resolution were carried out performing a full simulation and using
automatic reconstruction; in particular we studied by how much the measurement of
the hadronic energy would improve the neutrino energy reconstruction. As it can be
seen in Figure 6.6, taking into account the hadronic energy gives an RMS on the energy
reconstruction of ∼ 22% whereas the measurement of the muon alone gives an RMS of
about 31%. The large tail of badly reconstructed events when the hadronic energy is not
taken into account is evident; as it was explained before, this is due to the non-QE events
that are treated as QE ones.

With the resolution found including the hadronic energy, it is possible to obtain a
resolution on the invariant mass of about 10% both for QE and non-QE events as it can
be seen in Figure 6.7. However, in case of non-QE events, the mean is not zero but is
shifted towards negative values, due to a non perfect reconstruction of all the hadronic
energy. One of the reasons is the presence of neutrons: they do not deposit energy while
travelling in the LAr volume so that the reconstructed hadronic energy is less than the
value obtained from the MC.

Having proven that we can reach a fairly good resolution on the invariant mass
reconstruction, we analyse now in detail the statistical measurement of the QE/non-QE
ratio. As explained before, different exclusive distributions of W were obtained with our
MC, in particular we used three different distributions:

QE events where only the muon is seen (i.e. QE events in the topological class 0 as
defined above),

QE events where a muon and other particles were reconstructed (i.e. QE events in
class 1 and class 2),

non-QE events.

These three distributions were used to fit a full W distribution minimising the following
χ2:

χ2 =
Σi

[

xi − N(α(QECL !=0
i + βQECL=0

i ) + (1 − α)nQEi)
]2

xi
(6.5)

where α and β are the parameters, CL stands for the topological classes introduced before,
i is the bin index (60 bins from 0 to 2 GeV/c2) and N is the normalisation factor given
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NEUTRINO INTERACTION
• The interactions can be divided into quasi-elastic (QE) and deep-inelastic (DIS). The intermediate 

regime is given by resonant interactions (RES).

• This classification has a strong impact what can be observed i.e. on the detection.
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The invariant mass is almost 
only the nucleon mass:

W≈M

“soft collision”: only a nucleon 
is emitted (before nuclear 

reinteractions)
νµ

µ-
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n
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QE

The invariant mass is much 
larger than the nucleon mass:

W>>M

“hard collision”: many hadrons 
are emitted

DIS
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p, n, π, K, ...
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NEUTRINO DETECTION
• Neutrinos can be detected only looking at the products of their interactions.

• For NC events the nucleon/hadronic shower produced can be detected.

• For CC events both the lepton and the nucleon/hadronic shower can be measured.

• The resolutions, thresholds and types of measurement depend on the detector used.
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p
µ− 

νµCC in OPERA

νNC in OPERA

νµCC in LAr TPC

Super-Kamiokande IV
T2K Beam Run 0 Spill 952106
Run 66831 Sub 410 Event 96851432 
10-05-18:18:33:08
T2K beam dt =  1879.5 ns
Inner: 2949 hits, 8030 pe
Outer: 3 hits, 2 pe
Trigger: 0x80000007
D_wall: 709.7 cm
mu-like, p = 1024.6 MeV/c

Charge(pe)
    >26.7
23.3-26.7
20.2-23.3
17.3-20.2
14.7-17.3
12.2-14.7
10.0-12.2
 8.0-10.0
 6.2- 8.0
 4.7- 6.2
 3.3- 4.7
 2.2- 3.3
 1.3- 2.2
 0.7- 1.3
 0.2- 0.7
    < 0.2

0
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1 mu-e
decay

0 500 1000 1500 2000
0
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νµCC in SK



NEUTRINO OSCILLATIONS



A.Meregaglia 

SOLAR NEUTRINO PROBLEM
• The sun emits a huge number of neutrinos and the energy and flux have been computed by 

Bahcall starting in the1960’s.

• These fluxes are computed according to our knowledge on the solar model.

12
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SOLAR NEUTRINO PROBLEM
• Experiments measured however about half of the expected neutrino flux.

13

• Possible explanations:

1. The solar model is not well enough understood?

2. The neutrinos are not well enough known?

Experiment Threshold
(MeV)

Ratio                
exp/theory

Homestake (1968) 0.814 0.32 

Kamiokande (1989) 6.5 0.48

Gallex (1992) 0.233 0.55

SAGE (1990) 0.233 0.53

SK (1996) 6.5 0.41

SNO  (1999) 5 (CC events) 0.30 

1 SNU= 10-36 capture per target atom per second

νe
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• Due to low density of the atmosphere most of the hadrons 
decay before interacting and also a large fraction of the muons 
produced by the secondary particles decay before reaching the 
ground.

• The most relevant chain is:

ATMOSPHERIC NEUTRINO PROBLEM
• Cosmic rays hitting the atmosphere produce hadronic showers:

15

p + N → X + π/K ′s

1

• We might naively expect that the ratio

E q u a z i o n i

p + N → X + π/K ′s

π±
→ µ±νµ(ν̄µ)

µ±
→ e±νe(ν̄e)ν̄µ(νµ)

νµ + ν̄µ

νe + ν̄e

1

is ≈ 2, however this is true only at low energies (Eµ < 1 GeV) 
since at high energies muons reach the ground before decaying 
and the fraction of νe is therefore reduced.

Equazioni

p + N → X + π/K ′s

π± → µ±νµ(ν̄µ)

π+ → µ+νµ

π− → µ−ν̄µ

µ± → e±νe(ν̄e)ν̄µ(νµ)

νµ + ν̄µ

νe + ν̄e

RR =
(νµ + ν̄µ)/(νe + ν̄e)Observed

(νµ + ν̄µ)/(νe + ν̄e)Expected

| να〉 =
n

∑

i=1

U∗
αi | νi〉

| νi(#x, t)〉 = e−i(Eit−"pi·"x) | νi(0, 0)〉

Pαβ =| 〈νβ | να(#x, t)〉 |2

E =
√

p2
i + m2

i

c = ! = 1

sin2(1.27∆m2
ijL/E)

1
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ATMOSPHERIC NEUTRINO PROBLEM

• Many experiments measured the ratio:
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Experiment Ratio

Frejus (1988) 1.00 ± 0.15 ± 0.08

IMB (1991) 0.54 ± 0.05 ± 0.11

Kamiokande sub GeV (1994) 0.60 ± 0.05 ± 0.05

Kamiokande multi GeV (1994) 0.57 ± 0.08 ± 0.07

Soudan2 (1997) 0.64 ± 0.11 ± 0.06

SK sub GeV (1997) 0.65 ± 0.02 ± 0.05

SK multi GeV (1997) 0.67 ± 0.04 ± 0.08

Equazioni

p + N → X + π/K ′s

π±
→ µ±νµ(ν̄µ)

µ±
→ e±νe(ν̄e)ν̄µ(νµ)

νµ + ν̄µ

νe + ν̄e

RR =
(νµ + ν̄µ)/(νe + ν̄e)Observed

(νµ + ν̄µ)/(νe + ν̄e)Expected

1

• Are the electrons too many or the muons too few?
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ATMOSPHERIC NEUTRINO PROBLEM

• Super Kamiokande (SK) studied the dependence of 
electrons and muons (outgoing leptons of neutrino 
interactions) from the zenith angle.

• A “disappearance” of muon was observed in 
particular for up-going muons (i.e. neutrino that 
travelled through the earth to reach the detector).

• This was a strong evidence for neutrino 
oscillation (νµ → νx with νx ≠ νe).

• It also proved that the oscillation phenomenon has a 
dependence on the baseline (i.e. the distance 
between the neutrino source and the detector).

17

SK latest results

Expected

Data
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NEUTRINO MIXING
• Neutrino 3-flavour oscillation is now well established both at the solar and atmospheric scale. 

• This means that mass eigenstates and flavour eigenstates are different. 

• Neutrinos are produced in weak interactions i.e. as flavour eigenstates and propagate as mass 
eigenstates (Hamiltonian eigenstates).

• The relationship between the two eigenstate bases can be expressed using the Pontecorvo–Maki–
Nakagawa–Sakata (PMNS) matrix:
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• This means that the neutrino of a given flavour α can be expressed as a combination of mass 
states i :

Equazioni

p + N → X + π/K ′s

π± → µ±νµ(ν̄µ)

µ± → e±νe(ν̄e)ν̄µ(νµ)

νµ + ν̄µ

νe + ν̄e

RR =
(νµ + ν̄µ)/(νe + ν̄e)Observed

(νµ + ν̄µ)/(νe + ν̄e)Expected

| να〉 =
n∑

i=1

U∗
αi | νi〉

1
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• Under the assumption that the mass eigenstates have the same energy but different momentum 
due to a non zero value of their mass,

    the development of the computation gives raise to terms of the form:

NEUTRINO OSCILLATIONS
• The mass eigenstates are eigenstate of the Hamiltonian and their propagation can be 

described by plane wave solutions as:
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where

• The probability that a neutrino of a flavour α at a certain position and at a certain instant is 
measured as a neutrino of flavour β is called oscillation probability and can be computed as:

Equazioni

p + N → X + π/K ′s

π± → µ±νµ(ν̄µ)

µ± → e±νe(ν̄e)ν̄µ(νµ)

νµ + ν̄µ

νe + ν̄e

RR =
(νµ + ν̄µ)/(νe + ν̄e)Observed

(νµ + ν̄µ)/(νe + ν̄e)Expected

| να〉 =
n∑

i=1

U∗
αi | νi〉

| νi(#x, t)〉 = e−i(Eit−"pi·"x) | νi(0, 0)〉

1

Equazioni

p + N → X + π/K ′s

π± → µ±νµ(ν̄µ)

µ± → e±νe(ν̄e)ν̄µ(νµ)

νµ + ν̄µ

νe + ν̄e

RR =
(νµ + ν̄µ)/(νe + ν̄e)Observed

(νµ + ν̄µ)/(νe + ν̄e)Expected

| να〉 =
n∑

i=1

U∗
αi | νi〉

| νi(#x, t)〉 = e−i(Eit−"pi·"x) | νi(0, 0)〉

Pαβ =| 〈νβ | να(#x, t)〉 |2

1

Equazioni

p + N → X + π/K ′s

π± → µ±νµ(ν̄µ)

µ± → e±νe(ν̄e)ν̄µ(νµ)

νµ + ν̄µ

νe + ν̄e

RR =
(νµ + ν̄µ)/(νe + ν̄e)Observed

(νµ + ν̄µ)/(νe + ν̄e)Expected

| να〉 =
n

∑

i=1

U∗
αi | νi〉

| νi(#x, t)〉 = e−i(Eit−"pi·"x) | νi(0, 0)〉
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√

p2
i + m2

i

1

See exercise 
by C.Jollet

| να〉 = cos θ | ν1〉 + sin θ | ν2〉

| νβ〉 = − sin θ | ν1〉 + cos θ | ν2〉

| 〈να | ν1〉 |
2= cos2 θ

| νi(t)〉 = e−iEit | νi(0)〉

| νβ(t)〉 = − sin θe−iE1t | ν1(0)〉 + cos θe−iE2t | ν2(0)〉

Pαβ = sin2 2θ sin2(1.27
∆m2L

E
)

∑

α

| Uαi |
2= 1

∑

α

U∗
αiUαj = 0 for i $= j

〈lα |→ 〈l′α |= 〈lα | e−iφα ⇒ Uαi → U ′
αi = e−iφαUαi

P (να → νβ;U) = P (νβ → να;U∗)

P (να → νβ;U) = P (ν̄α → ν̄β;U∗)

sin2(∆m2
ijL/4E)

2

L = baseline (normally distance between 
ν source and detector)

| να〉 = cos θ | ν1〉 + sin θ | ν2〉

| νβ〉 = − sin θ | ν1〉 + cos θ | ν2〉

| 〈να | ν1〉 |
2= cos2 θ

| νi(t)〉 = e−iEit | νi(0)〉

| νβ(t)〉 = − sin θe−iE1t | ν1(0)〉 + cos θe−iE2t | ν2(0)〉

Pαβ = sin2 2θ sin2(1.27
∆m2L

E
)

∑

α

| Uαi |
2= 1

∑

α

U∗
αiUαj = 0 for i $= j

〈lα |→ 〈l′α |= 〈lα | e−iφα ⇒ Uαi → U ′
αi = e−iφαUαi

P (να → νβ;U) = P (νβ → να;U∗)

P (να → νβ;U) = P (ν̄α → ν̄β;U∗)

sin2(∆m2
ijL/4E)

∆m2
ij ≡ m2

i − m2
j

2
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• The oscillation term has been given in natural units, i.e. 

• Once the units are restored we have:

NEUTRINO OSCILLATIONS

20

See exercise 
by C.Jollet

Equazioni

p + N → X + π/K ′s

π± → µ±νµ(ν̄µ)

µ± → e±νe(ν̄e)ν̄µ(νµ)

νµ + ν̄µ

νe + ν̄e

RR =
(νµ + ν̄µ)/(νe + ν̄e)Observed

(νµ + ν̄µ)/(νe + ν̄e)Expected

| να〉 =
n

∑

i=1

U∗
αi | νi〉

| νi(#x, t)〉 = e−i(Eit−"pi·"x) | νi(0, 0)〉

Pαβ =| 〈νβ | να(#x, t)〉 |2

E =
√

p2
i + m2

i

c = ! = 1

1

Equazioni

p + N → X + π/K ′s

π± → µ±νµ(ν̄µ)

µ± → e±νe(ν̄e)ν̄µ(νµ)

νµ + ν̄µ

νe + ν̄e

RR =
(νµ + ν̄µ)/(νe + ν̄e)Observed

(νµ + ν̄µ)/(νe + ν̄e)Expected

| να〉 =
n

∑

i=1

U∗
αi | νi〉

| νi(#x, t)〉 = e−i(Eit−"pi·"x) | νi(0, 0)〉

Pαβ =| 〈νβ | να(#x, t)〉 |2

E =
√

p2
i + m2

i

c = ! = 1

sin2(1.27∆m2
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1

L = [km]
E = [GeV]
Δm2 = [eV2]

• The full oscillation probability in case of 3 flavours can be written as:

• Note that oscillations are possible only if at least two masses are different!
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| νi(#x, t)〉 = e−i(Eit−"pi·"x) | νi(0, 0)〉

Pαβ =| 〈νβ | να(#x, t)〉 |2

E =
√

p2
i + m2

i

c = ! = 1

sin2(1.27∆m2
ijL/E)

Pαβ = δαβ − 4
∑

i>j

Re(U∗
αiUβiUαjU

∗
βj) sin2(1.27∆m2

ijL/E)

+2
∑

i>j

Im(U∗
αiUβiUαjU

∗
βj) sin2(2.54∆m2

ijL/E)

1

| να〉 = cos θ | ν1〉 + sin θ | ν2〉

| νβ〉 = − sin θ | ν1〉 + cos θ | ν2〉

| 〈να | ν1〉 |
2= cos2 θ

| νi(t)〉 = e−iEit | νi(0)〉

| νβ(t)〉 = − sin θe−iE1t | ν1(0)〉 + cos θe−iE2t | ν2(0)〉

Pαβ = sin2 2θ sin2(1.27
∆m2L

E
)

∑

α

| Uαi |
2= 1

∑

α

U∗
αiUαj = 0 for i $= j

〈lα |→ 〈l′α |= 〈lα | e−iφα ⇒ Uαi → U ′
αi = e−iφαUαi

P (να → νβ;U) = P (νβ → να;U∗)

P (να → νβ;U) = P (ν̄α → ν̄β;U∗)

sin2(∆m2
ijL/4E)

2
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• For example the fraction of να made of ν1 is :

A SIMPLE PICTURE: 2 FLAVOURS

21

• As an example we take the 2-flavour case. The mixing matrix can be written as:

• This means that we can write the flavour eigenstates as:

| να〉 = cos θ | ν1〉 + sin θ | ν2〉

| νβ〉 = − sin θ | ν1〉 + cos θ | ν2〉

| 〈νe | ν1〉 |
2= cos2 θ

| νi(t)〉 = e−iEit | νi(0)〉

| νµ(t)〉 = − sin θe−iE1t | ν1(0)〉 + cos θe−iE1t | ν1(0)〉

2

| να〉 = cos θ | ν1〉 + sin θ | ν2〉

| νβ〉 = − sin θ | ν1〉 + cos θ | ν2〉

| 〈να | ν1〉 |
2= cos2 θ

| νi(t)〉 = e−iEit | νi(0)〉

| νµ(t)〉 = − sin θe−iE1t | ν1(0)〉 + cos θe−iE1t | ν1(0)〉

2

ναν1 ν2

cos2 ϑ cos2 ϑ

sin2 ϑ sin2 ϑ

νβ
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• Although in experiments the time is not measured and the fixed parameter is the baseline, for a 
better understanding let’s look at the time evolution only:

| νe〉 = cos θ | ν1〉 + sin θ | ν2〉

| νµ〉 = − sin θ | ν1〉 + cos θ | ν2〉

| 〈νe | ν1〉 |
2= cos2 θ

| νi(t)〉 = e−iEit | νi(0)〉

| νµ(t)〉 = − sin θe−iE1t | ν1(0)〉 + cos θe−iE1t | ν1(0)〉

2

• The time evolution of flavour eigenstates can be written as:

• The oscillation pattern can be graphically described as:

| να〉 = cos θ | ν1〉 + sin θ | ν2〉

| νβ〉 = − sin θ | ν1〉 + cos θ | ν2〉

| 〈να | ν1〉 |
2= cos2 θ

| νi(t)〉 = e−iEit | νi(0)〉

| νβ(t)〉 = − sin θe−iE1t | ν1(0)〉 + cos θe−iE2t | ν2(0)〉

2

Pure νβ Pure νβ Pure νβ

sin2(1.27∆m2
ijL/E)

Pαβ = δαβ − 4
∑

i>j

Re(U∗
αiUβiUαjU

∗
βj) sin2(1.27∆m2

ijL/E)

+2
∑

i>j

Im(U∗
αiUβiUαjU

∗
βj) sin2(2.54∆m2

ijL/E)

| να〉 = cos θ | ν1〉 + sin θ | ν2〉
| νβ〉 = − sin θ | ν1〉 + cos θ | ν2〉

| 〈να | ν1〉 |2= cos2 θ

| νi(t)〉 = e−iEit | νi(0)〉

| νβ(t)〉 = − sin θe−iE1t | ν1(0)〉 + cos θe−iE2t | ν2(0)〉

| να(t)〉 = cos θe−iE1t | ν1(0)〉 + sin θe−iE2t | ν2(0)〉

Pαβ = sin2 2θ sin2(1.27
∆m2L

E
)

∑

α

| Uαi |2= 1

∑

α

U∗
αiUαj = 0 for i $= j

〈lα |→ 〈l′α |= 〈lα | e−iφα ⇒ Uαi → U ′
αi = e−iφαUαi

P (να → νβ;U) = P (νβ → να;U∗)

2
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A SIMPLE PICTURE: 2 FLAVOURS
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• In the 2 flavour case the oscillation probability can be written as:

• If we take as an example a baseline of 295 km and the atmospheric mass splitting we can compute 
the oscillation probability from a flavour α to a flavour β as a function of the neutrino energy:

| να〉 = cos θ | ν1〉 + sin θ | ν2〉

| νβ〉 = − sin θ | ν1〉 + cos θ | ν2〉

| 〈να | ν1〉 |
2= cos2 θ

| νi(t)〉 = e−iEit | νi(0)〉

| νβ(t)〉 = − sin θe−iE1t | ν1(0)〉 + cos θe−iE2t | ν2(0)〉

Pαβ = sin2 2θ sin2(1.27
∆m2L

E
)

2

See exercise 
by C.Jollet
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WHAT ABOUT ANTINEUTRINOS?
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• In the SM every particle has its own antiparticle.

• In physics we have a theorem stating that CPT symmetry (Charge, Parity and Time) is 
conserved.

• CPT symmetry guarantees that the particle and its antiparticle have the same mass and opposite 
quantum numbers.

| να〉 = cos θ | ν1〉 + sin θ | ν2〉

| νβ〉 = − sin θ | ν1〉 + cos θ | ν2〉

| 〈να | ν1〉 |
2= cos2 θ

| νi(t)〉 = e−iEit | νi(0)〉

| νβ(t)〉 = − sin θe−iE1t | ν1(0)〉 + cos θe−iE2t | ν2(0)〉

Pαβ = sin2 2θ sin2(1.27
∆m2L

E
)

∑

α

| Uαi |
2= 1

∑

α

U∗
αiUαj = 0 for i $= j

〈lα |→ 〈l′α |= 〈lα | e−iφα ⇒ Uαi → U ′
αi = e−iφαUαi

P (να → νβ;U) = P (νβ → να;U∗)

2

• It can be easily seen in the oscillation probability equation that:

T transformation

• From the conservation of CPT we can therefore infer that:

| να〉 = cos θ | ν1〉 + sin θ | ν2〉

| νβ〉 = − sin θ | ν1〉 + cos θ | ν2〉

| 〈να | ν1〉 |
2= cos2 θ

| νi(t)〉 = e−iEit | νi(0)〉

| νβ(t)〉 = − sin θe−iE1t | ν1(0)〉 + cos θe−iE2t | ν2(0)〉

Pαβ = sin2 2θ sin2(1.27
∆m2L

E
)

∑

α

| Uαi |
2= 1

∑

α

U∗
αiUαj = 0 for i $= j

〈lα |→ 〈l′α |= 〈lα | e−iφα ⇒ Uαi → U ′
αi = e−iφαUαi

P (να → νβ;U) = P (νβ → να;U∗)

P (να → νβ;U) = P (ν̄α → ν̄β;U∗)

2

CP transformation

• If the mixing matrix is complex the probability of oscillation for neutrinos and antineutrinos will be 
in general different: this would lead to CP violation.
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MORE ON THE MIXING MATRIX
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• For N neutrinos the most general mixing matrix is a complex matrix N × N.  This gives 2N2 
free parameters.

• In order to conserve probability the matrix has to be unitary (the inverse matrix is equal to the 
conjugate transpose):

| να〉 = cos θ | ν1〉 + sin θ | ν2〉

| νβ〉 = − sin θ | ν1〉 + cos θ | ν2〉

| 〈να | ν1〉 |
2= cos2 θ

| νi(t)〉 = e−iEit | νi(0)〉

| νβ(t)〉 = − sin θe−iE1t | ν1(0)〉 + cos θe−iE2t | ν2(0)〉

Pαβ = sin2 2θ sin2(1.27
∆m2L

E
)

∑

α

| Uαi |
2= 1

∑

α

U∗
αiUαj = 0 for i $= j

2

| να〉 = cos θ | ν1〉 + sin θ | ν2〉

| νβ〉 = − sin θ | ν1〉 + cos θ | ν2〉

| 〈να | ν1〉 |
2= cos2 θ

| νi(t)〉 = e−iEit | νi(0)〉

| νβ(t)〉 = − sin θe−iE1t | ν1(0)〉 + cos θe−iE2t | ν2(0)〉

Pαβ = sin2 2θ sin2(1.27
∆m2L

E
)

∑

α

| Uαi |
2= 1

∑

α

U∗
αiUαj = 0 for i $= j

2

N constraints

N(N-1) constraints

• We can redefine our flavour states to absorb some phases:

| να〉 = cos θ | ν1〉 + sin θ | ν2〉

| νβ〉 = − sin θ | ν1〉 + cos θ | ν2〉

| 〈να | ν1〉 |
2= cos2 θ

| νi(t)〉 = e−iEit | νi(0)〉

| νβ(t)〉 = − sin θe−iE1t | ν1(0)〉 + cos θe−iE2t | ν2(0)〉

Pαβ = sin2 2θ sin2(1.27
∆m2L

E
)

∑

α

| Uαi |
2= 1

∑

α

U∗
αiUαj = 0 for i $= j

〈lα |→ 〈l′α |= 〈lα | e−iφα ⇒ Uαi → U ′
αi = e−iφαUαi

2

N constraints

• The same can be done on the mass states to add N-1 constraints (one global phase will 
remain). NOTE that this is true for Dirac neutrinos which means that neutrinos and 
antineutrinos are different particles. 

• This leaves (N-1)2 free parameters.

See talk by 
G.Drexlin
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MORE ON THE MIXING MATRIX
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• If CP is conserved the oscillation probability for neutrinos and antineutrinos are identical and 
the matrix can be formed by real parameters only giving N2 free parameters.

• Taking into account the orthogonality constraints we have N(N-1)/2 free parameters 
conserving CP.

• The number of complex phases is instead (N-1)(N-2)/2.

General (Dirac case) SM case (N=3)

Mixing angles              
(CP conserving)

N(N-1)/2 3

Complex phases           
(CP violating)

(N-1)(N-2)/2 1

Total free parameters (N-1)2 4
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MORE ON THE MIXING MATRIX
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• In the case of 3 neutrino families we have 3 real parameters (mixing angles) and 1 
complex one (complex phase).

• Various parameterisations exist but the most common one is: 4 CHAPTER 1. INTRODUCTION





νe

νµ

ντ



 =





Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3









ν1

ν2

ν3



 , (1.13)

where the probability for a transition from flavour a to flavour b is given by:

P (νa → νb) = δab −4
∑

j>i

Re(U∗
aiUbiUajU

∗
bj) sin2(1.27∆m2

ijL/E) (1.14)

±2
∑

j>i

Im(U∗
aiUbiUajU

∗
bj) sin2(2.54∆m2

ijL/E).

with L in km, E in GeV, and ∆m2 in eV2. The minus sign refers to neutrinos and the
plus sign to antineutrinos. Equation 1.12 is a limiting case of this formula when only a
single ∆m2 between the two states is considered.

With three neutrino masses there are two neutrino mass differences (∆m2
21, ∆m2

31), three
mixing angles (θ13, θ23, θ12) and one CP violating phase. From our current understanding
of atmospheric and solar oscillation, if we accept this model, we know the two mass
differences, and two of the mixing angles. The 3 × 3 matrix from Equation 1.13 can be
expressed in terms of these angles and mass differences as:

U =





1 0 0
0 c23 s23

0 −s23 c23









c13 0 s13e−iδ

0 1 0
−s13eiδ 0 c13









c12 s12 0
−s12 c12 0

0 0 1



 (1.15)

where “s” represents the sine of each mixing angle and “c” represents the cosine. In the
decomposition above, the disappearance of solar neutrinos is driven by the oscillations
of the 1-2 mass states, which are mixed by the two dimensional sub-matrix with the
θ12 terms, and observed atmospheric disappearance is driven by the matrix with the θ23

terms. The central mixing matrix, which contains the θ13 mixing angle, will cause νe to
appear in a νµ beam, and thus, by searching for νe appearance we can hope to measure
this angle.

It should be noted that δ in this equation will cause CP violation, which also modifies
the the νe appearance probability. Because of this degeneracy, a measurement of νe

appearance must be interpreted as a joint limit on both of these variables [3].

1.3 Neutrino oscillations in matter

In matter, neutrino propagation is affected by interactions. At low energies the elastic
forward scattering is relevant only (inelastic scattering can be neglected) [4]. If we consider
two neutrino flavours, νe and νX where X = µ or τ , it can be described by the potentials
Ve and VX . In a usual medium the difference of the potentials for νe and νX is due to

4 CHAPTER 1. INTRODUCTION





νe

νµ

ντ



 =





Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3









ν1

ν2

ν3



 , (1.13)

where the probability for a transition from flavour a to flavour b is given by:

P (νa → νb) = δab −4
∑

j>i

Re(U∗
aiUbiUajU

∗
bj) sin2(1.27∆m2

ijL/E) (1.14)

±2
∑

j>i

Im(U∗
aiUbiUajU

∗
bj) sin2(2.54∆m2

ijL/E).

with L in km, E in GeV, and ∆m2 in eV2. The minus sign refers to neutrinos and the
plus sign to antineutrinos. Equation 1.12 is a limiting case of this formula when only a
single ∆m2 between the two states is considered.

With three neutrino masses there are two neutrino mass differences (∆m2
21, ∆m2

31), three
mixing angles (θ13, θ23, θ12) and one CP violating phase. From our current understanding
of atmospheric and solar oscillation, if we accept this model, we know the two mass
differences, and two of the mixing angles. The 3 × 3 matrix from Equation 1.13 can be
expressed in terms of these angles and mass differences as:

U =





1 0 0
0 c23 s23

0 −s23 c23









c13 0 s13e−iδ

0 1 0
−s13eiδ 0 c13









c12 s12 0
−s12 c12 0

0 0 1



 (1.15)

where “s” represents the sine of each mixing angle and “c” represents the cosine. In the
decomposition above, the disappearance of solar neutrinos is driven by the oscillations
of the 1-2 mass states, which are mixed by the two dimensional sub-matrix with the
θ12 terms, and observed atmospheric disappearance is driven by the matrix with the θ23

terms. The central mixing matrix, which contains the θ13 mixing angle, will cause νe to
appear in a νµ beam, and thus, by searching for νe appearance we can hope to measure
this angle.

It should be noted that δ in this equation will cause CP violation, which also modifies
the the νe appearance probability. Because of this degeneracy, a measurement of νe

appearance must be interpreted as a joint limit on both of these variables [3].

1.3 Neutrino oscillations in matter

In matter, neutrino propagation is affected by interactions. At low energies the elastic
forward scattering is relevant only (inelastic scattering can be neglected) [4]. If we consider
two neutrino flavours, νe and νX where X = µ or τ , it can be described by the potentials
Ve and VX . In a usual medium the difference of the potentials for νe and νX is due to

angles and three phases. In this case the mixing matrix can be conveniently
parametrized as:

U =










1 0 0

0 c23 s23

0 −s23 c23










·










c13 0 s13e−iδCP

0 1 0

−s13eiδCP 0 c13










·










c21 s12 0

−s12 c12 0

0 0 1










·










eiη1 0 0

0 eiη2 0

0 0 1










,

(38)
where cij ≡ cos θij and sij ≡ sin θij . The angles θij can be taken without
loss of generality to lie in the first quadrant, θij ∈ [0, π/2] and the phases
δCP, ηi ∈ [0, 2π]. This is to be compared to the case of three Dirac neutrinos,
where the Majorana phases, η1 and η2, can be absorbed in the neutrino states
and therefore the number of physical phases is one (similarly to the CKM
matrix). In this case the mixing matrix U takes the form [23]:

U =










c12 c13 s12 c13 s13 e−iδCP

−s12 c23 − c12 s13 s23 eiδCP c12 c23 − s12 s13 s23 eiδCP c13 s23

s12 s23 − c12 s13 c23 eiδCP −c12 s23 − s12 s13 c23 eiδCP c13 c23










. (39)

Note, however, that the two extra Majorana phases are very hard to mea-
sure since they are only physical if neutrino mass is non-zero and therefore
the amplitude of any process involving them is suppressed a factor mν/E to
some power where E is the energy involved in the process which is typically
much larger than the neutrino mass. The most sensitive experimental probe
of Majorana phases is the rate of neutrinoless ββ decay.

If no new interactions for the charged leptons are present we can identify
their interaction eigenstates with the corresponding mass eigenstates after
phase redefinitions. In this case the charged current lepton mixing matrix U
is simply given by a 3 × n sub-matrix of the unitary matrix V ν .

It worth noticing that while for the case of 3 light Dirac neutrinos the proce-
dure leads to a fully unitary U matrix for the light states, generically for three
light Majorana neutrinos this is not the case when the full spectrum contains
heavy neutrino states which have been integrated out as can be seen, from
Eq. (26). Thus, strictly speaking, the parametrization in Eq. (38) does not
hold to describe the flavor mixing of the three light Majorana neutrinos in the
see-saw mechanism. However, as seen in Eq. (26), the unitarity violation is of
the order O(MD/MN) and it is expected to be very small (at it is also severely
constrained experimentally). Consequently in what follows we will ignore this
effect.

15

• This parametrisation allows for a rewriting of the matrix in 3 different ones, separating the 
oscillations according to the experimental evidences:

where “cij” stands for “cos ϑij” and “sij” for “sin ϑij” with ϑij a mixing angle.

Atmospheric scale Solar scale Interference
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• The difference of potential seen by the electron neutrinos with respect to other flavours can be 
written as:

where X stands for µ or τ, GF is the Fermi coupling constant and ne the electron density.

MATTER

28

• So far we have considered the neutrino propagation and oscillations in vacuum.

• When they travel in matter the hamiltonian of the system is different according to the flavours 
since only νe can do charge current scattering on electrons.

W±

νe

1

Z0

νe,µ,τ

1

e, p, n

e, p, n

νe,µ,τ

νe

e

e All flavoursOnly νe

1.4. PRESENT KNOWLEDGE 5

the charged current scattering of νe on electrons (νe + e → νe + e):

V = Ve − VX =
√

2GF ne (1.16)

where GF is the Fermi coupling constant and ne is the number density of electrons.

In the presence of matter the Hamiltonian of the system changes:

H0 → H = H0 + V, (1.17)

where H0 is the Hamiltonian in vacuum. Correspondingly, the eigenstates and the
eigenvalues change. Effective masses and mixing are different than in vacuum, and if
the matter density varies along the neutrino trajectory, they change as well. The new
mass eigenstates can be written as [5]:

µ2
1,2 =

m2
1 + m2

2

2
+ E(Ve + VX) ±

1

2

√

(∆m2 cos(2θ) − A)2 + (∆m2 sin(2θ))2 (1.18)

where A = 2E(Ve − VX). The mixing angle in matter becomes:

tan(2θm) =
∆m2 sin(2θ)

∆m2 cos(2θ) − A
. (1.19)

As expected, if A tends to zero (i.e. vacuum), θm tends to θ.

The very interesting case where A = ∆m2 cos(2θ) is called resonant condition. For
this value of the potential the mass difference between the two mass eigenstates is the
minimum possible value and the mixing angle is maximal, i.e. θm = π/4. If this case
holds, the presence of matter enhances the oscillation probability and neutrino oscillation
can be measured regardless of how small the mixing angle is in vacuum, provided it is not
zero.

1.4 Present knowledge

There is now a strong consensus in the neutrino physics community that neutrinos have
mass and their flavour states mix with each other. The present knowledge on neutrino
mixing and oscillation can be summarised as follows:

1. νµ → ντ with ∆m2 ∼ 3 × 10−3 eV2 (∆m2
31)

The SK collaboration [6] showed that the rate of upward-going νµ is about one-
half of that expected. The corresponding oscillation parameters are 1.6× 10−3

eV2 < ∆m2 < 3.9 × 10−3 eV2, sin2(2θ) > 0.92 at 90% C.L.

The K2K collaboration [7] showed a reduction of the νµ flux with more than
99% confidence level. The results also indicate an energy spectrum distortion
during the 250 km flight path from KEK to Kamioka. The resultant oscillation
parameters are consistent with the atmospheric neutrino observation. If
confirmed with more statistics, this is direct evidence of neutrino oscillation in
νµ disappearance at ∆m2 ∼ (a few) ×10−3 eV2.
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the charged current scattering of νe on electrons (νe + e → νe + e):

V = Ve − VX =
√

2GF ne (1.16)
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In the presence of matter the Hamiltonian of the system changes:

H0 → H = H0 + V, (1.17)
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The very interesting case where A = ∆m2 cos(2θ) is called resonant condition. For
this value of the potential the mass difference between the two mass eigenstates is the
minimum possible value and the mixing angle is maximal, i.e. θm = π/4. If this case
holds, the presence of matter enhances the oscillation probability and neutrino oscillation
can be measured regardless of how small the mixing angle is in vacuum, provided it is not
zero.

1.4 Present knowledge

There is now a strong consensus in the neutrino physics community that neutrinos have
mass and their flavour states mix with each other. The present knowledge on neutrino
mixing and oscillation can be summarised as follows:

1. νµ → ντ with ∆m2 ∼ 3 × 10−3 eV2 (∆m2
31)

The SK collaboration [6] showed that the rate of upward-going νµ is about one-
half of that expected. The corresponding oscillation parameters are 1.6× 10−3

eV2 < ∆m2 < 3.9 × 10−3 eV2, sin2(2θ) > 0.92 at 90% C.L.

The K2K collaboration [7] showed a reduction of the νµ flux with more than
99% confidence level. The results also indicate an energy spectrum distortion
during the 250 km flight path from KEK to Kamioka. The resultant oscillation
parameters are consistent with the atmospheric neutrino observation. If
confirmed with more statistics, this is direct evidence of neutrino oscillation in
νµ disappearance at ∆m2 ∼ (a few) ×10−3 eV2.

| να〉 = cos θ | ν1〉 + sin θ | ν2〉
| νβ〉 = − sin θ | ν1〉 + cos θ | ν2〉

| 〈να | ν1〉 |2= cos2 θ

| νi(t)〉 = e−iEit | νi(0)〉

| νβ(t)〉 = − sin θe−iE1t | ν1(0)〉 + cos θe−iE2t | ν2(0)〉

Pαβ = sin2 2θ sin2(1.27
∆m2L

E
)

∑

α

| Uαi |2= 1

∑

α

U∗
αiUαj = 0 for i $= j

〈lα |→ 〈l′α |= 〈lα | e−iφα ⇒ Uαi → U ′
αi = e−iφαUαi

P (να → νβ;U) = P (νβ → να;U∗)

P (να → νβ;U) = P (ν̄α → ν̄β;U∗)

sin2(∆m2
ijL/4E)

∆m2
ij ≡ m2

i − m2
j

2
√

2GF ne = 7.56 × 10−5eV 2ρ(g/cm3)

2

where

• If H0 is the Hamiltonian in Vacuum, the new Hamiltonian H becomes therefore:
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• We note some important features:

1. As expected if A → 0 (vacuum) θm → θ.

2. If                            we have a resonant condition: no matter how small the mixing value 
is in vacuum (provided it is not zero), the mixing in matter is maximal.

MATTER

29

• If the Hamiltonian changes, the eigenstates and the eigenvalues change as well i.e. effective 
masses and mixing are different in matter and they change along the neutrino 
trajectory if the matter density changes.

• In the simple 2 flavour case, the mass eigenstates can be written as:

1.4. PRESENT KNOWLEDGE 5
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V = Ve − VX =
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2GF ne (1.16)

where GF is the Fermi coupling constant and ne is the number density of electrons.
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As expected, if A tends to zero (i.e. vacuum), θm tends to θ.

The very interesting case where A = ∆m2 cos(2θ) is called resonant condition. For
this value of the potential the mass difference between the two mass eigenstates is the
minimum possible value and the mixing angle is maximal, i.e. θm = π/4. If this case
holds, the presence of matter enhances the oscillation probability and neutrino oscillation
can be measured regardless of how small the mixing angle is in vacuum, provided it is not
zero.

1.4 Present knowledge

There is now a strong consensus in the neutrino physics community that neutrinos have
mass and their flavour states mix with each other. The present knowledge on neutrino
mixing and oscillation can be summarised as follows:

1. νµ → ντ with ∆m2 ∼ 3 × 10−3 eV2 (∆m2
31)

The SK collaboration [6] showed that the rate of upward-going νµ is about one-
half of that expected. The corresponding oscillation parameters are 1.6× 10−3

eV2 < ∆m2 < 3.9 × 10−3 eV2, sin2(2θ) > 0.92 at 90% C.L.

The K2K collaboration [7] showed a reduction of the νµ flux with more than
99% confidence level. The results also indicate an energy spectrum distortion
during the 250 km flight path from KEK to Kamioka. The resultant oscillation
parameters are consistent with the atmospheric neutrino observation. If
confirmed with more statistics, this is direct evidence of neutrino oscillation in
νµ disappearance at ∆m2 ∼ (a few) ×10−3 eV2.

• The mixing angle can be written as:
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MASS HIERARCHY

30

• We have seen that the ingredients for the description of neutrino oscillations are: the 3 mixing 
angles (θ12, θ13, θ23), possibly the complex phase (δCP), and two mass differences (Δm2

21, Δm2
31 ≈ 

Δm2
32).

• Another important ingredient is the sign of the mass difference.

• For Δm2
21 the sign is known by the solar oscillation measurements (see later) but the sign of 

Δm2
31 is unknown. This is called mass hierarchy degeneracy.

νe

νµ

ντ

ν1

ν2

ν3

∆m2
atm

∆m2
sol

νe

νµ

ντ

∆m2
sol

∆m2
atm

ν1

ν2

ν3

• The sign has an effect on the oscillation probability in matter and this indetermination has an effect 
on the measurement of CP violation.

Normal Hierarchy Inverted Hierarchy

Δm2
31 > 0 Δm2

31 < 0
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HIERARCHY  VS CP

31

• To understand how mass hierarchy and CP violation effects mix let’s take an example: a baseline of 
1050 km and an energy of 2.5 GeV, for the measurement of νµ → νx transition (atmospheric 
sector). 

• To measure CP violation we have to observe a difference in the oscillation probability of neutrino 
and antineutrinos.

• The same spectrum can be fitted with N.H. and CP violation (δCP = 90) OR I.H. and CP 
conserved (δCP ≈ 0).
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EXAMPLE: νµ → νe

32

• The full 3-flavour neutrino oscillation probability for νµ → νe in matter is given by:

Atmospheric term

Solar term

Interference terms

Baseline = 1000km
sin2(2θ13) = 3.16x10-3

∆m31
2  = 2.6x10-3 eV2 • θ13 is crucial for the atmospheric part of the 

oscillation, and it must be proved to be non-zero.

• In case of a value of θ13 different from zero, the 
oscillation probability depends strongly on the 
value of δ.

• The so far unknown sign of ∆m31
2 also affects 

the oscillation probability (only in matter) 
and mass hierarchy must be determined.
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PARAMETERS
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• These are the parameters needed to describe neutrino oscillations in the 3 flavour scheme.

Parameter Present knowledge    
(90% C.L.)

Channel Experiments Future

θ23

θ12

θ13

⎢Δm2
21⎢

Sign (Δm2
21)

⎢Δm2
31⎢

Sign (Δm2
31)

δCP
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NEUTRINO EXPERIMENTS

This is NOT a full review of all the experiments that 
played a role in neutrino history!

It is just an highlight on some detection techniques and 
important results related to neutrino oscillation, but it is far 

from being complete.
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ATMOSPHERIC SECTOR

36

• To measure the parameters of the atmospheric sector (θ23, ∆m32
2 ≈  ∆m31

2) a good channel to 
study is the νµ→νx  transition.

• An approximation of the oscillation probability can be written as: 

• To observe such an oscillation, the experiments compare the expected νµ flux with the 
measured one.

P(νµ→νx) ~ cos4θ13 sin2θ23 sin2(∆m32
2 L/4Eν)

sin2 2θ23

∆m2
32 Eν (MeV)

νµ flux measured     
νµ flux predicted

No oscillation

• The experiments that play(ed) a crucial role in these measurements are: Super Kamiokande 
(SK), K2K, MINOS and T2K.
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SUPER KAMIOKANDE
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• SK is a 50 kton water Cherenkov 
detector with a fiducial volume of 
22.5 kton.

• It is located about 1 km underground.

• The inner detector is made of about 
11146 PMTs with a diameter of 50 cm.

• The veto (2m of water) is made of about 
1885 PMTs with a diameter of 20 cm.

• The event rate is about 10 ν/day both 
for solar and atmospheric neutrinos.

39m
42

m

2km3km

1km
(2700mwe)

Schematic view

PMTs ID view

The detector started data taking  in 
1996 and it is a multi purpose 
observatory: atm, solar and SN ν 
observation, far detector for K2K and 
T2K, proton decay search. 
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SK DETECTION PRINCIPLE
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Schematic view

In water n = 1.34 therefore 
for β =1, ϑ = 42 deg.

Charged particle

PMT

• The particle detection is based on the 
emission of Cherenkov radiation.

• Charged particles travelling through a 
medium at a velocity larger than the 
speed of light in that medium 
emit light (Cherenkov light).

• The angle ϑ depends on the refractive 
index of the medium n and the velocity of 
the particle with respect to the speed of 
light in vacuum β.

• The number of emitted photons with 
a wavelength between 300 and 600 nm 
(typical range of good efficiency of PMT) 
is only about 340 per cm. This is the 
reason for using large PMTs. 
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SK PARTICLE ID
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• The particle identification (important for the lepton to distinguish between the different 
neutrino flavours) is done using algorithms that study the ring shape.

stopping electron ring stopping muon ring

νe

e-

W±

n

p

1

νµ

µ-

W±

n

p

1

Not well 
defined cone

Well defined 
cone
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OSCILLATION OBSERVATION
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• Up-going and down-going neutrinos travel difference distances between the production 
point and the detector (i.e. they have different baselines).

Atmosphere

Cosmic 
ray

SK

Cosmic 
ray

νµ→νx oscillation

Detection of 
down-going 
and up-going
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OSCILLATION OBSERVATION

40

• Up-going and down-going neutrinos travel difference distances between the production 
point and the detector (i.e. they have different baselines).

Atmosphere

Cosmic 
ray

SK

Cosmic 
ray

νµ→νx oscillation

Detection of 
down-going 
and up-going

• The oscillation probability is therefore different: oscillations can be seen for the up-going 
neutrinos.
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SK RESULTS
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Indirect νµ→ντ oscillation 
observation (3 flavours model)

νµ disappearedNo νe appeared

Expected                
(NO OSCILLATION)

Data

Best fit 
(OSCILLATION)
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LONG BASELINE EXPERIMENTS

42

• Long baseline neutrino oscillation experiments aim at the precise measurement of the 
oscillation parameters using a neutrino beam.

• The advantage is that the neutrino energy can be tuned to match the baseline and the 
expected mass splitting.

• The neutrino spectra are measured near the source before the oscillation (near 
detector) and at the foreseen baseline after the oscillation (far detector). 
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NEUTRINO BEAM

43

• Standard neutrino beams are used to produce νµ and typically the chain is the following:

1. Protons are accelerated and shot on a Carbon target.

2. Pions (and kaons) are focused by electromagnetic fields in the “horns”.

3. Pions decay producing muons and neutrinos.

Scheme of the K2K beam

• The length of the decay pipe is tuned to optimised the decay of 
the pions and avoid the decay of the muons which would 
contaminate the beam with νe.

Equazioni

p + N → X + π/K ′s

π± → µ±νµ(ν̄µ)

π+ → µ+νµ

π− → µ−ν̄µ

µ± → e±νe(ν̄e)ν̄µ(νµ)

µ+ → e+νeν̄µ

µ− → e−ν̄eνµ

νµ + ν̄µ

νe + ν̄e

RR =
(νµ + ν̄µ)/(νe + ν̄e)Observed

(νµ + ν̄µ)/(νe + ν̄e)Expected

| να〉 =
n

∑

i=1

U∗
αi | νi〉

| νi(#x, t)〉 = e−i(Eit−"pi·"x) | νi(0, 0)〉

Pαβ =| 〈νβ | να(#x, t)〉 |2

E =
√

p2
i + m2

i

c = ! = 1

1

Equazioni

p + N → X + π/K ′s

π± → µ±νµ(ν̄µ)

π+ → µ+νµ

π− → µ−ν̄µ

µ± → e±νe(ν̄e)ν̄µ(νµ)

µ+ → e+νeν̄µ

µ− → e−ν̄eνµ

νµ + ν̄µ

νe + ν̄e

RR =
(νµ + ν̄µ)/(νe + ν̄e)Observed

(νµ + ν̄µ)/(νe + ν̄e)Expected

| να〉 =
n

∑

i=1

U∗
αi | νi〉

| νi(#x, t)〉 = e−i(Eit−"pi·"x) | νi(0, 0)〉

Pαβ =| 〈νβ | να(#x, t)〉 |2

E =
√

p2
i + m2

i

c = ! = 1

1
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T2K : 295 km

K2K : 250 km

Experiment Baseline νµ E (peak) L/E (km/GeV) optimal Δm2 (eV2)

K2K 250 km ∼ 1 GeV ∼ 250 4.9E-3

T2K 295 km ∼ 600 MeV ∼ 490 2.5E-3

MINOS 730 km ∼ 3 GeV ∼ 250 4.9E-3

• SK as far detector.

• K2K took data between 1999 and 2005.

• T2K started in January 2010: unfortunately 
the recent earthquake might retard the final 
results.

• The detection technology of MINOS 
(both for far and near detectors) is based 
on scintillation str ips inter leaved by 
magnetised steel.

• MINOS started data taking in 2002.

K2K - T2K MINOS
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Mar. 15, 2011XIV International Workshop on Neutrino Telescopes - L. Corwin
9

91.7% pure neutrino 

beam

37

D. Results

The likelihood is maximized in the ∆m2 – sin2 2θ space
and the best fit point within the physical region is found
to be at (∆m2, sin2 2θ) = (2.8 × 10−3eV2, 1.0). The val-
ues of all systematic parameters at the best fit point
are within 1σ of their estimated errors. At this point,
the expected number of events is 107.2, which agrees
well with the 112 observed within the statistical uncer-
tainty. The observed Erec

ν distribution is shown in Fig. 43
together with both the expected distributions for the
best-fit parameters, and the expectation without oscil-
lations. The consistency between the observed and the
best-fit Erec

ν distributions is checked using a Kolmogorov-
Smirnov (KS) test. For the best fit parameters, the KS
probability is 37 %, while for the null oscillation hypothe-
sis is 0.07 %. The observation agrees with the expectation
of neutrino oscillation. The highest likelihood is found at
(∆m2, sin2 2θ) = (2.6×10−3eV2, 1.2), which is outside of
the physical region. The probability that we would get
sin2 2θ ≥ 1.2 if the true parameters are at our best fit
point is 26.2%, based on the virtual MC experiments.

E!
rec GeV

ev
en
ts
/0
.2
G
eV

0

2

4
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16
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0 1 2 3 4 5

FIG. 43: The reconstructed Eν distribution for the 1-ring µ-
like sample. Points with error bars are data. The solid line is
the best fit spectrum with neutrino oscillation and the dashed
line is the expectation without oscillation. These histograms
are normalized by the number of events observed (58).

The probability that the observations can be explained
equally well by the no oscillation and by the oscillation
hypotheses is estimated by computing the difference of
log-likelihood between the null oscillation case and the
best fit point with oscillation. The null oscillation prob-
ability is calculated to be 0.0015 % (4.3σ). When only
normalization (shape) information is used, the probabil-
ity is 0.06% (0.42%).

TABLE XX: Summary of the null oscillation probability.
Each row is classified by the likelihood term used, and each
column represents the data set.

K2K-I+II K2K-I only K2K-II only
Shape + Norm. 0.0015% (4.3σ) 0.18% (3.1σ) 0.56% (2.8σ)
Shape only 0.42% (2.9σ) 7.7% 5.2%
Norm. only 0.06% (3.4σ) 0.6% 2.8%

TABLE XXI: Effect of each systematic uncertainty on the
null oscillation probability. The numbers in the table are null
oscillation probabilities when only the error written in the
first column is turned on.

Norm-only Shape-only Combined

Stat. only 0.01% 0.22% 0.0001%
FD spectrum 0.01% 0.24% 0.0002%
nQE/QE, NC/CC 0.01% 0.23% 0.0002%
Far/Near 0.02% 0.23% 0.0003%
ε1Rµ — 0.23% 0.0002%
Energy scale — 0.38% 0.0002%
Normalization 0.03% — 0.0005%

All errors 0.06% 0.42% 0.0015%

The null oscillation probability calculated separately
for each sub-sample or each likelihood term is shown in
Tab. XX. In addition, Tab. XXI shows the effect of each
systematic uncertainty on the null oscillation probability.
The effect is tested by turning on the error source written
in the first column in the table. As shown in the table,
the dominant contributions to the probabilities for the
normalization information are from the F/N flux ratio
and the normalization error, while the energy scale is
the dominant error source for the probability with the
Erec

ν shape information consistent with the results found
using the MC test described in Sec. IXB2.

The allowed region of oscillation parameters are eval-
uated based on the difference of log-likelihood between
each point and the best fit point:

∆lnL(∆m2, sin2 2θ) ≡ ln

(

Lphys
max

L(∆m2, sin2 2θ)

)

= lnLphys
max − lnL(∆m2, sin2 2θ),

(28)

where Lphys
max is the likelihood at the best-fit point and

L(∆m2, sin2 2θ) is the likelihood at (∆m2, sin2 2θ) with
systematic parameters that maximize the likelihood at
that point.

The allowed regions in the neutrino oscillation param-
eter space, corresponding to the 68%, 90% and 99% con-
fidence levels (CL) are shown in Fig. 44. They are de-
fined as the contour lines with lnL = lnLphys

max − 1.37,
−2.58 and −4.91, respectively. These regions are derived

K2K MINOS

T2K Goals

sin2(2θ23) ≥ 0.6

1.9 ≤ ⎢Δm2
31⎢ / 10-3 eV2 ≤ 3.5

sin2(2θ23) ≥ 0.87

2.24 ≤ ⎢Δm2
31⎢ / 10-3 eV2 ≤ 2.44

δ(sin2 (2θ23)) ~ 0.01

δ(∆m223) ≤ 3 × 10-5
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Parameter Present knowledge    
(90% C.L.)

Channel Experiments Future

θ23

θ12

θ13

⎢Δm2
21⎢

Sign (Δm2
21)

⎢Δm2
31⎢

Sign (Δm2
31)

δCP
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Parameter Present knowledge    
(90% C.L.)

Channel Experiments Future

θ23 sin2(2θ23) ≥ 0.96 P(νµ→νµ) SK, (K2K, MINOS) T2K

θ12

θ13

⎢Δm2
21⎢

Sign (Δm2
21)

⎢Δm2
31⎢ 2.24 ≤ ⎢Δm2

31⎢ / 10-3 eV2 ≤ 2.44 P(νµ→νµ) (SK, K2K), MINOS MINOS, T2K

Sign (Δm2
31)

δCP
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• So far in the atmospheric sector only disappearance 
has been measured i.e. νµ→νx.

• To prove that  the transition observed is actually 
νµ→ντ, another long baseline (from CERN to Gran 
Sasso) experiment is taking data: OPERA.

• The goal is the first observation of the oscillation in 
the appearance mode, detecting the τ lepton.

L = 730 km
CERN

LNGS

Tflight = 2.44 ms

νµ ντOscillation

• The τ lepton decays rapidly (~10-13 s) and 
travels about a hundred µm.

• To observe it a huge spacial resolution is 
needed: this is achieved using photographic 
emulsions.

20m

10m

10m

SM1
SM2



A.Meregaglia 

DETECTION TECHNIQUE

50

• The basic detection unit is the brick, made of sheets of lead and emulsions.

• The signal signature is the kink decay topology.

• To extract the correct brick and for the muon identification (selection νµ CC of events) the 
electronic detectors made of plastic scintillators and RPC planes are used.

Pb Pb

Decay “kink”
>25 mrad

emulsion “grains”
 track segment ~16 grains/44 µm

ντ

e , µ, h
τ

ντ

νe,νµ

Plastic base(200µm)

σθx~ 2.1 mrad 
σx~ 0.21 µm

ES ES
10.3 cm

12.8 cm

7.5 cm
=10 X0

Sandwich of 56 (1mm) Pb sheets
	

  + 57 FUJI emulsion layers
	

  + 1 changeable sheet

Brick weight: 8.3 kg
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Z (cm)
-800 -600 -400 -200 0 200 400 600 800 1000

X
 (

c
m

)

-400

-300

-200

-100

0

100

200

300

400
< 10 p.e.

> 10 p.e.

> 30 p.e.

> 50 p.e.

Cross Talk

----------

Fit Result

----------

Position X   258.31 cm

Position Y  -121.38 cm

Slope X  0.036

Slope Y  0.123

Momentum 11.280 GeV

Event Number 173520769, Tue Oct  2 17:04:25 2007
TOP VIEW (horizontal projection)

Z (cm)
-800 -600 -400 -200 0 200 400 600 800 1000

Y
 (

c
m

)

-500

-400

-300

-200

-100

0

100

200

300

400

µParticle is a 

----------

General
----------

** SM 1 **

nb TT X 338

nb TT Y 410

nb phe X 5143.5

nb phe Y 6307.7

nb RPC X 27

nb RPC Y 19

nb HPT X 52
----------

** SM 2 **

nb TT X 41

nb TT Y 63

nb phe X  287.2

nb phe Y  460.6

nb RPC X 22
nb RPC Y 16

nb HPT X 93

SIDE VIEW (vertical projection)

Reconstruction in electronic detectors Reconstruction in emulsions

νµ CC interaction

Data taking ongoing since 2007 
and 1 signal candidate has 
been observed. 



A.Meregaglia 

SOLAR SECTOR

52

• To measure the parameters of the solar sector (θ12, ∆m21
2) a good channel to study is the νe → 

νx  transition.

• Even in this case the idea is to compare the measured flux with the expected one, which relies on 
our knowledge on the standard solar model.

• According to the detection technology the different experiments are sensitive to different energies 
and therefore production chains in the sun.

Radio chemical 

Homestake
SAGE

GALLEX
GNO

Cherenkov 
radiation

Cherenkov + 
scintillation

• In addition, the νe → νx  transition can be studied using reactor neutrinos as it is done in the 
KamLAND experiment (scintillation).
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• These are the first experiments on solar neutrinos: the Homestake experiment (also known as 
Davis experiment) started in 1960.

• The detection principle is the following:

| να〉 = cos θ | ν1〉 + sin θ | ν2〉
| νβ〉 = − sin θ | ν1〉 + cos θ | ν2〉

| 〈να | ν1〉 |2= cos2 θ

| νi(t)〉 = e−iEit | νi(0)〉

| νβ(t)〉 = − sin θe−iE1t | ν1(0)〉 + cos θe−iE2t | ν2(0)〉

Pαβ = sin2 2θ sin2(1.27
∆m2L

E
)

∑

α

| Uαi |2= 1

∑

α

U∗
αiUαj = 0 for i $= j

〈lα |→ 〈l′α |= 〈lα | e−iφα ⇒ Uαi → U ′
αi = e−iφαUαi

P (να → νβ;U) = P (νβ → να;U∗)

P (να → νβ;U) = P (ν̄α → ν̄β;U∗)

sin2(∆m2
ijL/4E)

∆m2
ij ≡ m2

i − m2
j

2
√

2GF ne = 7.56 × 10−5eV 2ρ(g/cm3)

νe +71 Ga →71 Ge + e−

2

νe +71 Ga →71 Ge + e−

νe +37 Cl →37 Ar + e−

3

τ1/2 =11.43 days
Threshold = 233 keV

τ1/2 =35 days
Threshold = 814 keVHomestake

SAGE
GALLEX

GNO

• The advantage is the low threshold and the 
possibility to explore neutrinos coming from the pp 
chain.

• The disadvantage is the complex counting of the 
interactions and the fact that it is not real time 
detection.

Experiment Ratio                
exp/theory

Homestake (1968) 0.32 

SAGE (1990) 0.53

Gallex (1992) 0.55

Observed deficit
These atoms are chemically 

extracted and counted when they 
decay
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• The working principle of SK has been described in relation to atmospheric neutrinos.

• The signal that can be observed is the elastic scattering on electrons:

Threshold = 6.5 MeV

Experiment Ratio                
exp/theory

SK (1998) 0.41

Observed deficit

νe +71 Ga →71 Ge + e−

νe +37 Cl →37 Ar + e−

νe + e− → νe + e−

3

May 31, 1996  –  July 13, 2001   (1496 days )

22400±230 
solar ν events
(14.5 ev/day) 

background

NOTE: no evidence for 
spectrum distortion.
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• SNO was an experiment located in Canada  that uses Cerenkov detection method.

• The target is heavy water (D2O) and the experiment can detect all flavours of 
neutrinos (depending on the channel studied).

1700 tonnes  Inner
Shielding H2O

1000 tonnes D2O

5300 tonnes Outer 
Shield H2O

12 m Diameter 
Acrylic Vessel

Support Structure 
for 9500 PMTs, 
60% coverage

Urylon Liner and
Radon Seal

• The advantage is that it measures a 
deficit of the νe but also it 
confirms that the total flux of ν 
is in agreement with the SSM.
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• The three reactions used are the following:

νe +71 Ga →71 Ge + e−

νe +37 Cl →37 Ar + e−

νe + e− → νe + e−

P (νe → νe) = 1 − sin2 2θ12 sin2(1.27
∆m2

12L

E
)

P (νe → νe) = 1 −
1

2
sin2 2θ12

νe + d → p + p + e−

νx + d → p + n + νx

3

νe +71 Ga →71 Ge + e−

νe +37 Cl →37 Ar + e−

νe + e− → νe + e−

P (νe → νe) = 1 − sin2 2θ12 sin2(1.27
∆m2

12L

E
)

P (νe → νe) = 1 −
1

2
sin2 2θ12

νe + d → p + p + e−

νx + d → p + n + νx

3

νe +71 Ga →71 Ge + e−

νe +37 Cl →37 Ar + e−

νe + e− → νe + e−

P (νe → νe) = 1 − sin2 2θ12 sin2(1.27
∆m2

12L

E
)

P (νe → νe) = 1 −
1

2
sin2 2θ12

νe + d → p + p + e−

νx + d → p + n + νx

νx + e− → νx + e−

3
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• The three reactions used are the following:

νe +71 Ga →71 Ge + e−

νe +37 Cl →37 Ar + e−

νe + e− → νe + e−

P (νe → νe) = 1 − sin2 2θ12 sin2(1.27
∆m2

12L

E
)

P (νe → νe) = 1 −
1

2
sin2 2θ12

νe + d → p + p + e−

νx + d → p + n + νx

3

νe +71 Ga →71 Ge + e−

νe +37 Cl →37 Ar + e−

νe + e− → νe + e−

P (νe → νe) = 1 − sin2 2θ12 sin2(1.27
∆m2

12L

E
)

P (νe → νe) = 1 −
1

2
sin2 2θ12

νe + d → p + p + e−

νx + d → p + n + νx

3

νe +71 Ga →71 Ge + e−

νe +37 Cl →37 Ar + e−

νe + e− → νe + e−

P (νe → νe) = 1 − sin2 2θ12 sin2(1.27
∆m2

12L

E
)

P (νe → νe) = 1 −
1

2
sin2 2θ12

νe + d → p + p + e−

νx + d → p + n + νx

νx + e− → νx + e−

3

How is the neutron 
detected?
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• The three reactions used are the following:

νe +71 Ga →71 Ge + e−

νe +37 Cl →37 Ar + e−

νe + e− → νe + e−

P (νe → νe) = 1 − sin2 2θ12 sin2(1.27
∆m2

12L

E
)

P (νe → νe) = 1 −
1

2
sin2 2θ12

νe + d → p + p + e−

νx + d → p + n + νx

3

νe +71 Ga →71 Ge + e−

νe +37 Cl →37 Ar + e−

νe + e− → νe + e−

P (νe → νe) = 1 − sin2 2θ12 sin2(1.27
∆m2

12L

E
)

P (νe → νe) = 1 −
1

2
sin2 2θ12

νe + d → p + p + e−

νx + d → p + n + νx

3

νe +71 Ga →71 Ge + e−

νe +37 Cl →37 Ar + e−

νe + e− → νe + e−

P (νe → νe) = 1 − sin2 2θ12 sin2(1.27
∆m2

12L

E
)

P (νe → νe) = 1 −
1

2
sin2 2θ12

νe + d → p + p + e−

νx + d → p + n + νx

νx + e− → νx + e−

3

How is the neutron 
detected?

6.25 MeV

νe +71 Ga →71 Ge + e−

νe +37 Cl →37 Ar + e−

νe + e− → νe + e−

P (νe → νe) = 1 − sin2 2θ12 sin2(1.27
∆m2

12L

E
)

P (νe → νe) = 1 −
1

2
sin2 2θ12

νe + d → p + p + e−

νx + d → p + n + νx

νx + e− → νx + e−

n +2 H → γ +3 H

3

phase 1
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• The three reactions used are the following:

νe +71 Ga →71 Ge + e−

νe +37 Cl →37 Ar + e−

νe + e− → νe + e−

P (νe → νe) = 1 − sin2 2θ12 sin2(1.27
∆m2

12L

E
)

P (νe → νe) = 1 −
1

2
sin2 2θ12

νe + d → p + p + e−

νx + d → p + n + νx

3

νe +71 Ga →71 Ge + e−

νe +37 Cl →37 Ar + e−

νe + e− → νe + e−

P (νe → νe) = 1 − sin2 2θ12 sin2(1.27
∆m2

12L

E
)

P (νe → νe) = 1 −
1

2
sin2 2θ12

νe + d → p + p + e−

νx + d → p + n + νx

3

νe +71 Ga →71 Ge + e−

νe +37 Cl →37 Ar + e−

νe + e− → νe + e−

P (νe → νe) = 1 − sin2 2θ12 sin2(1.27
∆m2

12L

E
)

P (νe → νe) = 1 −
1

2
sin2 2θ12

νe + d → p + p + e−

νx + d → p + n + νx

νx + e− → νx + e−

3

How is the neutron 
detected?

6.25 MeV

νe +71 Ga →71 Ge + e−

νe +37 Cl →37 Ar + e−

νe + e− → νe + e−

P (νe → νe) = 1 − sin2 2θ12 sin2(1.27
∆m2

12L

E
)

P (νe → νe) = 1 −
1

2
sin2 2θ12

νe + d → p + p + e−

νx + d → p + n + νx

νx + e− → νx + e−

n +2 H → γ +3 H

3

phase 1

8.6 MeV

phase 2
2 ton of NaCl

νe +71 Ga →71 Ge + e−

νe +37 Cl →37 Ar + e−

νe + e− → νe + e−

P (νe → νe) = 1 − sin2 2θ12 sin2(1.27
∆m2

12L

E
)

P (νe → νe) = 1 −
1

2
sin2 2θ12

νe + d → p + p + e−

νx + d → p + n + νx

νx + e− → νx + e−

n +2 H → γ +3 H

n +35 Cl → γ +36 Cl

3
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• Using all the channels SNO found:

1. About 30% of the expected νe flux (in case of no oscillation).

2. A total flux in agreement with the SSM prediction.

• The non oscillation hypothesis is ruled out at 5.3 σ C.L.Physics Implication: Flavor Content

Strong evidence of flavor change

ssm = 5.05+1.01
-0.81 sno = 5.09+0.44

-0.43
+0.46
-0.43

is
5.3 
from 
zero

Clear indication of oscillation from e to other active neutrinos ( or )

First SNO 
paper in 2001 
obtains 3.3 
variance from 
null oscillation 
hypothesis by 
comparing SNO 
CC with ES 
from SuperK.

Physics Implication: Flavor Content

Strong evidence of flavor change

ssm = 5.05+1.01
-0.81 sno = 5.09+0.44

-0.43
+0.46
-0.43

is
5.3 
from 
zero

Clear indication of oscillation from e to other active neutrinos ( or )

First SNO 
paper in 2001 
obtains 3.3 
variance from 
null oscillation 
hypothesis by 
comparing SNO 
CC with ES 
from SuperK.
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• KamLAND is a liquid scintillator detector located in Japan that measures νe coming from 
nuclear reactors (equivalent of long baseline experiments for the solar sector). 

• The reaction used is the following:

νe +71 Ga →71 Ge + e−

νe +37 Cl →37 Ar + e−

νe + e− → νe + e−

P (νe → νe) = 1 − sin2 2θ12 sin2(1.27
∆m2

12L

E
)

P (νe → νe) = 1 −
1

2
sin2 2θ12

νe + d → p + p + e−

νx + d → p + n + νx

νx + e− → νx + e−

n +2 H → γ +3 H

n +35 Cl → γ +36 Cl

ν̄e + p → e+ + n

3

n

e+
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• KamLAND is a liquid scintillator detector located in Japan that measures νe coming from 
nuclear reactors (equivalent of long baseline experiments for the solar sector). 

• The reaction used is the following:

νe +71 Ga →71 Ge + e−

νe +37 Cl →37 Ar + e−

νe + e− → νe + e−

P (νe → νe) = 1 − sin2 2θ12 sin2(1.27
∆m2

12L

E
)

P (νe → νe) = 1 −
1

2
sin2 2θ12

νe + d → p + p + e−

νx + d → p + n + νx

νx + e− → νx + e−

n +2 H → γ +3 H

n +35 Cl → γ +36 Cl

ν̄e + p → e+ + n

3

Charged particles 
passing through a liquid 

scintillator emit light (no 
directionality) that can be 

detected with PMT

The positron 
annihilates producing 
gammas at 1.022 MeV

Prompt signal (∼10 ns)

nn

e+
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• KamLAND is a liquid scintillator detector located in Japan that measures νe coming from 
nuclear reactors (equivalent of long baseline experiments for the solar sector). 

• The reaction used is the following:

νe +71 Ga →71 Ge + e−

νe +37 Cl →37 Ar + e−

νe + e− → νe + e−

P (νe → νe) = 1 − sin2 2θ12 sin2(1.27
∆m2

12L

E
)

P (νe → νe) = 1 −
1

2
sin2 2θ12

νe + d → p + p + e−

νx + d → p + n + νx

νx + e− → νx + e−

n +2 H → γ +3 H

n +35 Cl → γ +36 Cl

ν̄e + p → e+ + n

3

Charged particles 
passing through a liquid 

scintillator emit light (no 
directionality) that can be 

detected with PMT

The positron 
annihilates producing 
gammas at 1.022 MeV

Prompt signal (∼10 ns)

The neutrons are 
absorbed on H:

νe +71 Ga →71 Ge + e−

νe +37 Cl →37 Ar + e−

νe + e− → νe + e−

P (νe → νe) = 1 − sin2 2θ12 sin2(1.27
∆m2

12L

E
)

P (νe → νe) = 1 −
1

2
sin2 2θ12

νe + d → p + p + e−

νx + d → p + n + νx

νx + e− → νx + e−

n +2 H → γ +3 H

n +35 Cl → γ +36 Cl

ν̄e + p → e+ + n

n + p →2 H + γ

3

producing gammas at 
2.2 MeV

Delayed signal (∼200 µs)

nnn

e+
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KAMLAND
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• The antineutrinos come from reactors and they 
have a spectra (flux times cross section) between 1 
and 10 MeV.

• The antineutrinos come from many reactors and the 
average baseline (weighted on the flux) is about 
180 km.

NO-VE, Venezia 15/04/2008 A.Tonazzo - Double Chooz 4

! detection at reactor experiments

Detection by “inverse beta”
!e + p " e+ + n

in scintillator

Prompt photons from e+ annihilation

EVIS # E! - (Mn-Mp) + me

Delayed photons from n capture

                           on H :     $t~200µs E~2MeV

on dedicated nuclei (Gd): $t ~30µs  E~8MeV

! 

N" s
#1( ) = 6N

Fiss
s
#1( ) $ 2 %1011P s
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KAMLAND
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9

Energy (MeV)
corresponding 
to a baseline of 

180 km

4.56 3 2

No 
oscillation 

expectation

Clear evidence of 
oscillation and 

parameter 
measurement
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RESULTS

61

• KamLAND has a great precision on the mass splitting since the positions of the maxima of 
oscillation are well measured.

• However the normalisation is less precise and the solar measurements give more stringent 
constraints on the mixing angle.
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SOLAR OSCILLATIONS

62

• As in the atmospheric case, a best value for the mixing angle and the mass splitting has been found 
combining all experiments.

• With this value of ∆m21
2 and the known baseline (the distance sun - earth is about 1.5 x 108 km) it 

is clear that no oscillation pattern can be measured and only the average of sin2(θ12) can be seen 
(i.e. 0.5).
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• It is clear that if the mixing angle is maximal, we 
expect half of the neutrinos, otherwise we expect 
more than half:

νe +71 Ga →71 Ge + e−

νe +37 Cl →37 Ar + e−

νe + e− → νe + e−

P (νe → νe) = 1 − sin2 2θ12 sin2(1.27
∆m2

12L

E
)

P (νe → νe) = 1 −
1

2
sin2 2θ12

3

νe +71 Ga →71 Ge + e−

νe +37 Cl →37 Ar + e−

νe + e− → νe + e−

P (νe → νe) = 1 − sin2 2θ12 sin2(1.27
∆m2

12L

E
)

P (νe → νe) = 1 −
1

2
sin2 2θ12

3

≥ 0.5

• However, the deficit found by some experiments 
is larger than 0.5. The answer comes from the 
MSW effect.
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MSW EFFECT FOR SOLAR NEUTRINOS
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• We have seen that in matter the oscillation is modified.

• Solar neutrinos are produced inside the sun and therefore travel through a medium with 
varying density.

• This is quite complicated since instantaneous eigenstates of the hamiltonian are not the eigenstate 
of propagation.

• The flavour transformation of neutrinos from one flavour to another in a medium of varying 
density is called MSW (Mikheyev-Smirnov-Wolfenstein) and it depends on the neutrino energy.

Solar Neutrinos

Neutrino Energy Transition
Survival 

probability

< 2 MeV Vacuum oscillations

2 - 10 MeV
Interplay between 
vacuum oscillations 

and adiabatic transition

>10 MeV adiabatic transition

νe +71 Ga →71 Ge + e−

νe +37 Cl →37 Ar + e−

νe + e− → νe + e−

P (νe → νe) = 1 − sin2 2θ12 sin2(1.27
∆m2

12L

E
)

P (νe → νe) = 1 −
1

2
sin2 2θ12

3

νe +71 Ga →71 Ge + e−

νe +37 Cl →37 Ar + e−

νe + e− → νe + e−

P (νe → νe) = 1 − sin2 2θ12 sin2(1.27
∆m2

12L

E
)

P (νe → νe) = 1 −
1

2
sin2 2θ12

3

NOTE: Matter effects in the Sun have uniquely determined the positive sign Δm2
21.
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PARAMETERS
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Parameter Present knowledge    
(90% C.L.)

Channel Experiments Future

θ23 sin2(2θ23) ≥ 0.96 P(νµ→νµ) SK, (K2K, MINOS) T2K

θ12

θ13

⎢Δm2
21⎢

Sign (Δm2
21)

⎢Δm2
31⎢ 2.24 ≤ ⎢Δm2

31⎢ / 10-3 eV2 ≤ 2.44 P(νµ→νµ) (SK, K2K), MINOS MINOS, T2K

Sign (Δm2
31)

δCP
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PARAMETERS
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Parameter Present knowledge    
(90% C.L.)

Channel Experiments Future

θ23 sin2(2θ23) ≥ 0.96 P(νµ→νµ) SK, (K2K, MINOS) T2K

θ12 0.82 ≤ sin2(2θ12) ≤ 0.89
Solar ν +

 P(anti νe → anti νe)
SK, SNO, KamLAND

θ13

⎢Δm2
21⎢ 7.2 ≤ Δm2

21 / 10-5 eV2 ≤ 7.9
Solar ν +

 P(anti νe → anti νe)
SK, SNO, KamLAND

Sign (Δm2
21) +

Solar ν +
 P(anti νe → anti νe)

SK, SNO, KamLAND

⎢Δm2
31⎢ 2.24 ≤ ⎢Δm2

31⎢ / 10-3 eV2 ≤ 2.44 P(νµ→νµ) (SK, K2K), MINOS MINOS, T2K

Sign (Δm2
31)

δCP
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INTERFERENCE SECTOR

66

• To measure the mixing angle of the interference sector (θ13) there are two possibilities:

νe → νx  transition (disappearance channel)νµ → νe  transition (appearance channel)

This channel is investigated by the T2K 
experiment and it will be investigated by future 

LBL such as NOvA.

C
H

O
O

Z 
de

te
ct

or

This channel was investigated by the Chooz 
experiment and it is now studied by other 
reactors experiments, one of which is the 

Double Chooz experiment.
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• The neutrino source consists of two nuclear 
reactors (produced νe and observation of the   
νe → νx transition).

CHOOZ

67

• Chooz was an experiment that uses the detection principle of the liquid scintillator.

•  As described for the KamLAND experiment, the reaction observed is: 

producing gammas at   
8 MeV

Delayed signal (∼30 µs)

νe +71 Ga →71 Ge + e−

νe +37 Cl →37 Ar + e−

νe + e− → νe + e−

P (νe → νe) = 1 − sin2 2θ12 sin2(1.27
∆m2

12L

E
)

P (νe → νe) = 1 −
1

2
sin2 2θ12

νe + d → p + p + e−

νx + d → p + n + νx

νx + e− → νx + e−

n +2 H → γ +3 H

n +35 Cl → γ +36 Cl

ν̄e + p → e+ + n

n + p →2 H + γ

n + Gd → Gd∗ → Gd + γ

3

νe +71 Ga →71 Ge + e−

νe +37 Cl →37 Ar + e−

νe + e− → νe + e−

P (νe → νe) = 1 − sin2 2θ12 sin2(1.27
∆m2

12L

E
)

P (νe → νe) = 1 −
1

2
sin2 2θ12

νe + d → p + p + e−

νx + d → p + n + νx

νx + e− → νx + e−

n +2 H → γ +3 H

n +35 Cl → γ +36 Cl

ν̄e + p → e+ + n

3

• The scintillator is doped with Gadolinium (Gd) and the signature of the delayed signal (neutron 
absorption) is given by:

East Reactor
West Reactor

300 mwe
Hill topology

1115 m

998 m
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East Reactor
West Reactor

300 mwe
Hill topology
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998 m

DOUBLE CHOOZ

68

Double Chooz uses the same 
technique but two detectors in order to 
measure the flux before oscillations and 
reduce the systematics.
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East Reactor
West Reactor

351 m

465 m

115 mwe
Flat topology

300 mwe
Hill topology

1115 m

998 m

Iso - Near/Far flux

DOUBLE CHOOZ

69

Double Chooz uses the same 
technique but two detectors in order to 
measure the flux before oscillations and 
reduce the systematics.
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(DOUBLE) CHOOZ

70

• Chooz did not measure any oscillation and gave a limit on the value of the mixing angle θ13.

• Double Chooz has just started and it should provide in a few years a limit 5 times better than 
Chooz or in a good scenario observe the oscillations.

• Other reactor experiments such as RENO and Daya Bay will also give results in a near future.

40

α̂) for which the likelihood is maximum; any parameter
set uniquely identifies a particular energy spectrum. The
set of maximum likelihood estimators (MLE) is our ob-
servable.

In order to obtain strong confidence limits, we com-
puted the probability density function numerically. The
domain of oscillation parameters (0 < sin2(2θ) < 1, 10−4

< δm2 < 1 eV2) was sampled by a 100× 100 grid (with
a constant binning in log δm2); the range 0.95 < α <
1.05 was divided into 10 cells5. For each set of (sin2(2θ),
δm2, α) we generated 5 · 104 spectra scattered around
αX(sin2(2θ), δm2) with uncertainties given by the covari-
ance matrix. MLE for each experiment are searched for
in the same space spanned by the parameters but with a
coarser grid (20 × 20 × 10).

Fig. 58. Exclusion plot at 90% sCL for the oscillation parame-
ters based on the differential energy spectrum; the FC contour,
obtained with “correct systematics” treatment, is also shown.

The results of our computation are shown in Fig. 58.
The confidence bounds obtained are significantly higher
than those obtained by the procedure explained in the
previous section. In fact, oscillations νe → νx are ex-
cluded for δm2 ≥ 8 · 10−4 eV2 at maximum mixing and
sin2(2θ) ≥ 0.17 at large δm2 values. It should be noted
that the limits quoted are only slightly looser than those
obtained by using the FC prescription with the correct
inclusion of systematics, as shown in Fig. 58.

5 We verified that values of α outside the considered range
give no further contribution to the projection of the band on
(sin2(2θ), δm2)-space.

12 Conclusions

The CHOOZ experiment stopped taking data in July 1998,
about 5 years after the submission of the proposal for ap-
proval. With more than 1-year data taking, the statistical
error (2.8%) on the neutrino flux matched the goal (3%)
of the proposal. Accurate estimatea of the detection effi-
ciencies as well as precise measurements of the detector
parameters also allowed us to keep the systematic uncer-
tainty (2.7%) below expectations (3.2%).

We found (at 90% confidence level) no evidence for
neutrino oscillations in the νe disappearance mode, for
the parameter region given by approximately δm2 > 7 ·
10−4 eV2 for maximum mixing, and sin2 2θ = 0.10 for
large δm2. Less sensitive results, based only on the com-
parison of the positron spectra from the two different-
distance nuclear reactors (and therefore independent of
the absolute normalization of the νe flux, the number of
protons and the detector efficiencies) were also presented.

Our result does not allow the atmospheric neutrino a-
nomaly to be explained in terms of νµ → νe oscillations,
thus leaving, in a three-flavour mixing scheme, the νµ →
ντ possibility.

Many cross-checks were performed on the data to test
the internal consistence and improve the reliability of our
results. As a by-product, we have shown that the use of
reaction (2) allowed us to locate the νe source within a
cone of half-aperture $ 18◦ at 68% confidence level.

Construction of the laboratory was funded by Électricité de
France (E.D.F.). Other work was supported in part by IN2P3–
CNRS (France), INFN (Italy), the United States Department
of Energy, and by RFBR (Russia). We are very grateful to the
Conseil Général des Ardennes for providing us with the facili-
ties for the experiment. At various stages during the organiza-
tion and management of the experiment, we were assisted by
the efficient staff at SENA (Société Electronucléaire des Ar-
dennes) and by the E.D.F. CHOOZ B nuclear plant. Special
thanks to the technical staff of our laboratories for their excel-
lent work in designing and building the detector.

We would like to thank Prof. Erno Pretsch and his group
at ETH Zurich, for some precise measurements of the target
scintillator Hydrogen content.
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T2K

71

• T2K experiment has been presented in the framework of the atmospheric sector for the 
measurement of the νµ→νx  transition.

• The main goal of the experiment is the observation of the νµ → νe  transition for the 
measurement of the θ13 mixing angle. 

• T2K uses a neutrino super beam (high intensity) and the 
neutrino energy is focused using the “off-axis” technique 
to the maximum of oscillation corresponding to the 
atmospheric mass splitting.

• The goal in case of no oscillation is a limit on sin2 (2θ13) 
of 8 × 10-3 (90% C.L.) (factor of 20 better than 
CHOOZ).

Exposure (22.5kt × 1021 p.o.t)

sin
2  

2 θ
13

 s
en

si
tiv

ity

90% C.L.
δBG = 20%

δBG = 10%

δBG = 5%

sin22θ13~0.008 (90%)
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RECENT RESULTS

72

• T2K and MINOS have recently published some results that strongly disfavour the possibility of a 
vanishing  θ13 mixing angle.

• The two experiments found an excess of events over the background of 2.5 and 1.7 sigma 
respectively.
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RESULTS

73

• Chooz is still the experiment with the best limit on θ13 but in the near future we expect much 
better sensitivities both from reactor experiment and from long baseline 
neutrino oscillation experiments.
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PARAMETERS
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Parameter Present knowledge    
(90% C.L.)

Channel Experiments Future

θ23 sin2(2θ23) ≥ 0.96 P(νµ→νµ) SK, (K2K, MINOS) T2K

θ12 0.82 ≤ sin2(2θ12) ≤ 0.89
Solar ν +

 P(anti νe → anti νe)
SK, SNO, KamLAND

θ13

⎢Δm2
21⎢ 7.2 ≤ Δm2

21 / 10-5 eV2 ≤ 7.9
Solar ν +

 P(anti νe → anti νe)
SK, SNO, KamLAND

Sign (Δm2
21) +

Solar ν +
 P(anti νe → anti νe)

SK, SNO, KamLAND

⎢Δm2
31⎢ 2.24 ≤ ⎢Δm2

31⎢ / 10-3 eV2 ≤ 2.44 P(νµ→νµ) (SK, K2K), MINOS MINOS, T2K

Sign (Δm2
31)

δCP
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PARAMETERS
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Parameter Present knowledge    
(90% C.L.)

Channel Experiments Future

θ23 sin2(2θ23) ≥ 0.96 P(νµ→νµ) SK, (K2K, MINOS) T2K

θ12 0.82 ≤ sin2(2θ12) ≤ 0.89
Solar ν +

 P(anti νe → anti νe)
SK, SNO, KamLAND

θ13 sin2(2θ13) ≤ 0.15
 P(anti νe → anti νe)

P(νµ→νe)
Chooz

T2K, Double Chooz, RENO, 
Daya Bay

Future LBL

⎢Δm2
21⎢ 7.2 ≤ Δm2

21 / 10-5 eV2 ≤ 7.9
Solar ν +

 P(anti νe → anti νe)
SK, SNO, KamLAND

Sign (Δm2
21) +

Solar ν +
 P(anti νe → anti νe)

SK, SNO, KamLAND

⎢Δm2
31⎢ 2.24 ≤ ⎢Δm2

31⎢ / 10-3 eV2 ≤ 2.44 P(νµ→νµ) (SK, K2K), MINOS MINOS, T2K

Sign (Δm2
31)

δCP



A.Meregaglia 

OPEN QUESTIONS
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• The past and present generation of neutrino oscillation experiments allowed to almost 
complete our knowledge on the mixing matrix. However there are still two 
ingredients completely unknown: the sign of the atmospheric mass splitting i.e. the mass 
hierarchy (sign ∆m31

2) and the value of the complex phase δCP.

• Out of these two, δCP is the most interesting measurement in neutrino physics since if it is different 
from the conserving values (0, π) it would cause CP violation in the leptonic sector, 
which would be an important ingredient in the explanation of the matter-antimatter 
asymmetry in our universe.

• Unfortunately, as explained before, mass hierarchy degeneracy and CP violation effects are difficult 
to disentangle, since both give a difference between neutrinos and antineutrinos.

• Moreover the intrinsic CP violation can be observed ONLY if the mixing angle θ13 

is not zero.
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CP VIOLATION

77

• Future long baseline experiments aim at the measurement of CP violation comparing neutrino and 
antineutrino oscillation probabilities.

• The mass hierarchy can be observed when the baseline is long enough (i.e. ≥ ∼ 1000 km) and 
matter effects become measurable (effect dependent on the baseline).

• The intrinsic CP violation is independent on the baseline.

• A way to disentangle the two effects is to measure neutrino oscillations at different 
baselines (always comparing neutrino and antineutrino oscillation probabilities).
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CP VIOLATION

77

• Future long baseline experiments aim at the measurement of CP violation comparing neutrino and 
antineutrino oscillation probabilities.

• The mass hierarchy can be observed when the baseline is long enough (i.e. ≥ ∼ 1000 km) and 
matter effects become measurable (effect dependent on the baseline).

• The intrinsic CP violation is independent on the baseline.

• A way to disentangle the two effects is to measure neutrino oscillations at different 
baselines (always comparing neutrino and antineutrino oscillation probabilities).

• Another possibility is to compare the 
different maxima of oscillations 
since their ratio has a difference 
dependence on the value of δCP.
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CP VIOLATION

78

• Future long baseline experiments aim at the measurement of CP violation comparing neutrino and 
antineutrino oscillation probabilities.

• The mass hierarchy can be observed when the baseline is long enough (i.e. ≥ ∼ 1000 km) and 
matter effects become measurable (effect dependent on the baseline).

• The intrinsic CP violation is independent on the baseline.

• A way to disentangle the two effects is to measure neutrino oscillations at different 
baselines (always comparing neutrino and antineutrino oscillation probabilities).
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CP VIOLATION

78

• Future long baseline experiments aim at the measurement of CP violation comparing neutrino and 
antineutrino oscillation probabilities.

• The mass hierarchy can be observed when the baseline is long enough (i.e. ≥ ∼ 1000 km) and 
matter effects become measurable (effect dependent on the baseline).

• The intrinsic CP violation is independent on the baseline.

• A way to disentangle the two effects is to measure neutrino oscillations at different 
baselines (always comparing neutrino and antineutrino oscillation probabilities).

• A third way consists in comparing results 
of appearance and disappearance 
experiments since disappearance 
experiments are CP conserving:

νe +71 Ga →71 Ge + e−

νe +37 Cl →37 Ar + e−

νe + e− → νe + e−

P (νe → νe) = 1 − sin2 2θ12 sin2(1.27
∆m2

12L

E
)

P (νe → νe) = 1 −
1

2
sin2 2θ12

νe + d → p + p + e−

νx + d → p + n + νx

νx + e− → νx + e−

n +2 H → γ +3 H

n +35 Cl → γ +36 Cl

ν̄e + p → e+ + n

n + p →2 H + γ

n + Gd → Gd∗ → Gd + γ

P (να → νx) = 1 − P (να → να)

3

CPT conserved + T conserved 

CP conserved 
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PARAMETERS
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Parameter Present knowledge    
(90% C.L.)

Channel Experiments Future

θ23 sin2(2θ23) ≥ 0.96 P(νµ→νµ) SK, (K2K, MINOS) T2K

θ12 0.82 ≤ sin2(2θ12) ≤ 0.89
Solar ν +

 P(anti νe → anti νe)
SK, SNO, KamLAND

θ13 sin2(2θ13) ≤ 0.15
 P(anti νe → anti νe)

P(νµ→νe)
CHOOZ T2K, Double CHOOZ

Future LBL

⎢Δm2
21⎢ 7.2 ≤ Δm2

21 / 10-5 eV2 ≤ 7.9
Solar ν +

 P(anti νe → anti νe)
SK, SNO, KamLAND

Sign (Δm2
21) +

Solar ν +
 P(anti νe → anti νe)

SK, SNO, KamLAND

⎢Δm2
31⎢ 2.24 ≤ ⎢Δm2

31⎢ / 10-3 eV2 ≤ 2.44 P(νµ→νµ) (SK, K2K), MINOS MINOS, T2K

Sign (Δm2
31)

δCP
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Parameter Present knowledge    
(90% C.L.)

Channel Experiments Future

θ23 sin2(2θ23) ≥ 0.96 P(νµ→νµ) SK, (K2K, MINOS) T2K

θ12 0.82 ≤ sin2(2θ12) ≤ 0.89
Solar ν +

 P(anti νe → anti νe)
SK, SNO, KamLAND

θ13 sin2(2θ13) ≤ 0.15
 P(anti νe → anti νe)

P(νµ→νe)
CHOOZ T2K, Double CHOOZ

Future LBL

⎢Δm2
21⎢ 7.2 ≤ Δm2

21 / 10-5 eV2 ≤ 7.9
Solar ν +

 P(anti νe → anti νe)
SK, SNO, KamLAND

Sign (Δm2
21) +

Solar ν +
 P(anti νe → anti νe)

SK, SNO, KamLAND

⎢Δm2
31⎢ 2.24 ≤ ⎢Δm2

31⎢ / 10-3 eV2 ≤ 2.44 P(νµ→νµ) (SK, K2K), MINOS MINOS, T2K

Sign (Δm2
31) Unknown

P(νµ→νe)  Vs 
P(anti νe → anti νe)

Future LBL

δCP Unknown
P(νµ→νe)  Vs 

P(anti νe → anti νe)
T2K+Reactor
Future LBL
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• The present generation of neutrino oscillation experiments will allow to reach a limit on sin2 
(2θ13) ≤ 8 × 10-3.

• According to the fact that θ13 is different from zero or not (strong evidences recently 
obtained), the next generation of experiment will aim to a reduction of such a limit, or to 
the search of CP violation in the leptonic sector.

• The future can be schematically summarised as:

Detectors

Beams

Larger O(100)

More powerful O(10)

New technology:
Beta Beams

Neutrino Factories

GLACIER
MEMPHYS

LENA

J-PARC upgrade
FNAL upgrade
CNGS upgrade

All these projects require a huge amount of money and R&D. 
The neutrino community is evaluating all the different options (projects such as 

LAGUNA or EUROν) to have a joint effort on the next generation experiments.
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• What has been presented is what is normally called “standard” neutrino physics.

• In 1996 LSND experiment saw an excess of antineutrinos in a new region of parameters 
incompatible with other flavour trnasitions: more than 3 neutrinos? Sterile neutrinos?

• MiniBooNE did not see the excess studying neutrino oscillations, but has some hints of an 
excess in the antineutrino mode.

• MINOS has shown hints for a difference in the oscillation parameters of neutrinos and 
antineutrinos: how to explain this?

-(.+$/&*%&+0*.%&($.0&&%&1$%)$
0&2+.$3/,$*($%-4.(5+$&067/.$

There are some hints of “new physics” in the neutrino sector. If proved to be true 
many things about neutrinos that we think we understand are to be rethought...



...TO BE CONTINUED...


