Physics at the LHC
- From the Standard Model to searches for new physics-

Prof. Karl Jakobs
Physikalisches Institut
Universität Freiburg
Outline of the lectures:

1. Introduction
2. The accelerator and experiments
3. Test of the Standard Model
4. Search for the Higgs Boson
5. Search for New Phenomena

Disclaimer: I will try to highlight important first physics measurements and results on searches for new physics. The coverage is not complete, i.e. not all results available will be presented; Results from both general purpose experiments, ATLAS and CMS, are shown, but there might still be a bias towards the experiment I am working on. This bias is not linked to the scientific quality of the results.
Building blocks of the Standard Model

- **Matter**
 - made out of fermions
 - (Quarks and leptons)

- **Forces**
 - electromagnetism, weak and strong force
 - + gravity
 - (mediated by bosons)

- **Higgs field**
 - needed to break (hide) the electroweak symmetry and to give mass to weak gauge bosons and fermions

→ **Higgs particle**

Theoretical arguments: \(m_H < \sim 1000 \text{ GeV/c}^2 \)
Where do we stand today?

e^+e^- colliders LEP at CERN and SLC at SLAC + the Tevatron pp collider + HERA at DESY + many other experiments (fixed target) have explored the energy range up to ~100 GeV with incredible precision

- The Standard Model is consistent with all experimental data!
- No Physics Beyond the SM observed (except clear evidence for neutrino masses)
- No Higgs seen (yet)

Direct searches: (95% CL limits)

$m_H > 114.4$ GeV/c2

$m_H < 158$ GeV/c2 or $m_H > 173$ GeV/c2

![Only unambiguous example of observed Higgs](P. Higgs, Univ. Edinburgh)

Summer 2010

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Fit</th>
<th>$O_{\text{meas}}^\text{fit}$/O$_\text{meas}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta\alpha^{(6)}_{\text{ew}}(m_Z)$</td>
<td>0.02758 ± 0.00035</td>
<td>0.02768</td>
</tr>
<tr>
<td>m_Z [GeV]</td>
<td>91.1875 ± 0.0021</td>
<td>91.1874</td>
</tr>
<tr>
<td>Γ_Z [GeV]</td>
<td>2.4952 ± 0.0023</td>
<td>2.4959</td>
</tr>
<tr>
<td>α_had^0 [nb]</td>
<td>41.540 ± 0.037</td>
<td>41.479</td>
</tr>
<tr>
<td>R_1</td>
<td>20.767 ± 0.025</td>
<td>20.742</td>
</tr>
<tr>
<td>A_{1b}^0</td>
<td>0.01714 ± 0.00095</td>
<td>0.01645</td>
</tr>
<tr>
<td>$A_{1}(P)$</td>
<td>0.1465 ± 0.00032</td>
<td>0.1481</td>
</tr>
<tr>
<td>R_b</td>
<td>0.21629 ± 0.00066</td>
<td>0.21579</td>
</tr>
<tr>
<td>R_c</td>
<td>0.1721 ± 0.0030</td>
<td>0.1723</td>
</tr>
<tr>
<td>$A_{0,b}$</td>
<td>0.0992 ± 0.0016</td>
<td>0.1038</td>
</tr>
<tr>
<td>$A_{0,c}$</td>
<td>0.0707 ± 0.0035</td>
<td>0.0742</td>
</tr>
<tr>
<td>A_b</td>
<td>0.923 ± 0.020</td>
<td>0.935</td>
</tr>
<tr>
<td>A_c</td>
<td>0.670 ± 0.027</td>
<td>0.668</td>
</tr>
<tr>
<td>$A_{(SLD)}$</td>
<td>0.1513 ± 0.0021</td>
<td>0.1481</td>
</tr>
<tr>
<td>$\sin^2\theta_{W}^{\text{eff}}(Q_{tb})$</td>
<td>0.2324 ± 0.0012</td>
<td>0.2314</td>
</tr>
<tr>
<td>m_W [GeV]</td>
<td>80.399 ± 0.023</td>
<td>80.379</td>
</tr>
<tr>
<td>Γ_W [GeV]</td>
<td>2.085 ± 0.042</td>
<td>2.092</td>
</tr>
<tr>
<td>m_t [GeV]</td>
<td>173.3 ± 1.1</td>
<td>173.4</td>
</tr>
</tbody>
</table>

July 2010
Consistency with the Standard Model

Sensitivity to the Higgs boson and other new particles via quantum corrections:

$m_H = 89 (+35) (-26)$ GeV/c2

$m_H < 158$ GeV/c2 (95 % CL)

Interpretation within the Standard Model (incl. new (2010) m_W and m_t measurements)
The Open Questions
Key Questions of Particle Physics

1. Mass: What is the origin of mass?
 - How is the electroweak symmetry broken?
 - Does the Higgs boson exist?

2. Unification: What is the underlying fundamental theory?
 - Can the interactions be unified at larger energy?
 - How can gravity be incorporated?
 - Is our world supersymmetric?
 -

3. Flavour: or the generation problem
 - Why are there three families of matter?
 - Neutrino masses and mixing?
 - What is the origin of CP violation?
Problems at a larger scale

We are here

Surrounded by

• Mass (planets, stars, …, hydrogen gas)

• Dark Matter

• Dark Energy
The role of the LHC

1. Explore the TeV mass scale

 - What is the origin of the electroweak symmetry breaking?

 - The search for “low energy” supersymmetry
 Can a link between SUSY and dark matter be established?

 - Other scenarios beyond the Standard Model

 -

 Look for the “expected”, but we need to be open for surprises

2. Precise tests of the Standard Model

 - There is much sensitivity to physics beyond the Standard Model in the precision area

 - Many Standard Model measurements can be used to test and to tune the detector performance

M. Battaglia, I. Hinchliffe, D.Tovey, hep-ph/0406147
Theoretical models for physics Beyond the Standard Model
How can interesting objects be produced?

Quarks and gluons in the initial state

- High-p_T QCD jets
- W, Z
- Higgs $m_H=150$ GeV
- \tilde{q}, \tilde{g} pairs, $m \sim 1$ TeV
Hard Scattering Processes ….or QCD jet production

Dominant hard scattering processes: qq, qg and gg “scattering”
Results from HERA on the proton structure

- Large data sets and combination of the two HERA experiments (H1 and ZEUS) improve the precision on the parton distribution functions.

- Very important to reduce cross section uncertainties at hadron colliders; but still not good enough ….. (~ 10% errors for LHC cross sections)
Calculation of cross sections

\[\sigma = \sum_{a,b} \int dx_a \, dx_b \, f_a(x_a, Q^2) \, f_b(x_b, Q^2) \, \hat{\sigma}_{ab}(x_a, x_b) \]

Sum over initial partonic states \(a,b \)

\(\hat{\sigma}_{ab} \) \(\equiv \) hard scattering cross section

\(f_i(x, Q^2) \) \(\equiv \) parton density function

\[\ldots + \text{higher order QCD corrections (perturbation theory)} \]

which for some processes turn out to be large (e.g. Higgs production via gg fusion)

usually introduced as K-factors:

\[K_{[n]} = \sigma_{[n]} / \sigma_{[LO]} \]

a few examples:

Drell-Yan production of W/Z: \(K_{NLO} \sim 1.2 \)

Higgs production via gg fusion: \(K_{NLO} \sim 1.8 \)
Luminosity

The rate of events produced for a given physics process is given by:

\[\boxed{N = L \cdot \sigma} \]

L = Luminosity
\(\sigma = \) cross section

dimensions: \(\text{s}^{-1} = \text{cm}^{-2} \text{s}^{-1} \cdot \text{cm}^{-2} \)

Luminosity depends on the machine:
important parameters: number of protons stored, beam focus at interaction region, ...

In order to achieve acceptable production rates for the interesting physics processes, the luminosity must be high!

\[L = 2 \cdot 10^{32} \text{ cm}^{-2} \text{s}^{-1} \] design value for Tevatron Run II
\[L = 10^{33} \text{ cm}^{-2} \text{s}^{-1} \] planned for the initial phase of the LHC (1-2 years)
\[L = 10^{34} \text{ cm}^{-2} \text{s}^{-1} \] LHC design luminosity, very large !!
(1000 x larger than LEP-2, 50 x Tevatron Run II design)

One experimental year has \(\sim 10^7 \text{ s} \) →

Integrated luminosity at the LHC:

- 10 fb\(^{-1}\) per year, in the initial phase
- 100 fb\(^{-1}\) per year, later, design
Cross Sections and Production Rates

Rates for $L = 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$: (LHC)

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inelastic proton-proton</td>
<td>10^9 / s</td>
</tr>
<tr>
<td>reactions:</td>
<td></td>
</tr>
<tr>
<td>$b\bar{b}$ pairs</td>
<td>5×10^6 / s</td>
</tr>
<tr>
<td>$t\bar{t}$ pairs</td>
<td>8 / s</td>
</tr>
<tr>
<td>$W \rightarrow e \nu$</td>
<td>150 / s</td>
</tr>
<tr>
<td>$Z \rightarrow e^+ e^-$</td>
<td>15 / s</td>
</tr>
<tr>
<td>Higgs (150 GeV)</td>
<td>0.2 / s</td>
</tr>
<tr>
<td>Gluino, Squarks (1 TeV)</td>
<td>0.03 / s</td>
</tr>
</tbody>
</table>

LHC is a factory for: top-quarks, b-quarks, W, Z, ..., Higgs, ...
Impact of reduced beam energy

• Ratio of parton luminosities for 7/14 and 10/14 TeV ...

\[
\begin{align*}
\text{ttbar:} & \quad \frac{7}{14} = 0.2 \\
W' (1.5 \text{ TeV}): & \quad \frac{7}{14} = 0.1 \\
W' (1 \text{ TeV}): & \quad \frac{7(\text{pp})}{2(\text{ppbar})} \approx 60
\end{align*}
\]

...but still large factor compared to the Tevatron (\(\sqrt{s} = 1.96 \text{ TeV}\))
The Large Hadron Collider (LHC)
Begin of a new era in particle physics

CMS

ALICE

LHCb

ATLAS
The Large Hadron Collider

... became a reality in 2008 after ~15 years of hard work

Beam energy 3.5 TeV (nominal)
SC Dipoles 1232, 15 m, 8.33T
Stored Energy 362 MJ/Beam
Bunch spacing 25 ns
Particles/Bunch 1.15 · 10^{11}
Luminosity 10^{32} - 10^{34} cm^{-2}s^{-1}
Int. luminosity 1 - 100 fb^{-1} / year
Comparison of the LHC and Tevatron machine parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>LHC</th>
<th>Tevatron</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centre-of-mass energy</td>
<td>14 TeV</td>
<td>1.96 TeV</td>
</tr>
<tr>
<td>Number of bunches</td>
<td>2808</td>
<td>36</td>
</tr>
<tr>
<td>Bunch spacing</td>
<td>25 ns</td>
<td>396 ns</td>
</tr>
<tr>
<td>Energy stored in beam</td>
<td>360 MJ</td>
<td>1 MJ</td>
</tr>
<tr>
<td>Peak Luminosity</td>
<td>10^{33}-10^{34} cm$^{-2}$s$^{-1}$</td>
<td>3.5×10^{32} cm$^{-2}$s$^{-1}$</td>
</tr>
<tr>
<td>Integrated Luminosity / year</td>
<td>10-100 fb$^{-1}$</td>
<td>~ 2 fb$^{-1}$</td>
</tr>
</tbody>
</table>

- 7 times more energy (after initial 3.5 and 5 TeV phases)
- Factor 3-30 times more luminosity
- Physics cross sections factor 10-100 larger
Proton – proton collisions at the LHC

Proton – proton:

2835 x 2835 bunches
Separation: 7.5 m (25 ns)

10^{11} protons / bunch
Crossing rate of p-bunches: 40 Mio. / s
Luminosity: \(L = 10^{34} \text{ cm}^{-2} \text{ s}^{-1} \)

$\sim 10^9$ pp collisions / s
(superposition of 23 pp-interactions per bunch crossing: pile-up)

~ 1600 charges particles in the detector

\Rightarrow high particle densities
 high requirements for the detectors
Detector requirements from physics

- Good measurement of **leptons and photons** with large transverse momentum P_T

- Good measurement of **missing transverse energy** (E_T^{miss}) and energy measurements in the forward regions
 \Rightarrow calorimeter coverage down to $\eta \sim 5$

- Efficient **b-tagging and τ identification** (silicon strip and pixel detectors)
Detector requirements from the experimental environment (pile-up)

- LHC detectors must have **fast response**, otherwise integrate over many bunch crossings → too large pile-up

 Typical response time: 20-50 ns
 → integrate over 1-2 bunch crossings
 → pile-up of 25-50 minimum bias events
 ⇒ very challenging readout electronics

- **High granularity** to minimize probability that pile-up particles be in the same detector element as interesting object
 → large number of electronic channels, high cost

- LHC detectors must be **radiation resistant**: high flux of particles from pp collisions → high radiation environment
 e.g. in forward calorimeters: up to 10^{17} n / cm2 in 10 years of LHC operation
The ATLAS experiment

• Solenoidal magnetic field (2T) in the central region (momentum measurement)

High resolution silicon detectors:
- 6 Mio. channels (80 μm x 12 cm)
- 100 Mio. channels (50 μm x 400 μm)
 space resolution: ~ 15 μm

• Energy measurement down to 1° to the beam line

• Independent muon spectrometer (supercond. toroid system)

Diameter 25 m
Barrel toroid length 26 m
End-cap end-wall chamber span 46 m
Overall weight 7000 Tons
CMS

Superconducting Coil, 4 Tesla

Tracker
Pixels
Silicon Microstrips
210 m² of silicon sensors
9.6M channels

Muon Barrel
Drift Tube Chambers (DT)
Resistive Plate Chambers (RPC)

Calorimeters
ECAL
76k scintillating PbWO4 crystals
HCAL
Plastic scintillator/brass sandwich

Iron Yoke

Total weight 12500 t
Overall diameter 15 m
Overall length 21.6 m

Muon Endcaps
Cathode Strip Chambers (CSC)
Resistive Plate Chambers (RPC)
<table>
<thead>
<tr>
<th></th>
<th>ATLAS</th>
<th>CMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnetic field</td>
<td>2 T solenoid + toroid: 0.5 T (barrel), 1 T (endcap)</td>
<td>4 T solenoid + return yoke</td>
</tr>
<tr>
<td>Tracker</td>
<td>Silicon pixels and strips + transition radiation tracker $\sigma/p_T \approx 5 \cdot 10^{-4} p_T + 0.01$</td>
<td>Silicon pixels and strips (full silicon tracker) $\sigma/p_T \approx 1.5 \cdot 10^{-4} p_T + 0.005$</td>
</tr>
<tr>
<td>EM calorimeter</td>
<td>Liquid argon + Pb absorbers $\sigma/E \approx 10%/\sqrt{E} + 0.007$</td>
<td>PbWO$_4$ crystals $\sigma/E \approx 3%/\sqrt{E} + 0.003$</td>
</tr>
<tr>
<td>Hadronic calorimeter</td>
<td>Fe + scintillator / Cu+LAr (10λ) $\sigma/E \approx 50%/\sqrt{E} + 0.03$ GeV</td>
<td>Brass + scintillator ($7 \lambda +$ catcher) $\sigma/E \approx 100%/\sqrt{E} + 0.05$ GeV</td>
</tr>
<tr>
<td>Muon</td>
<td>$\sigma/p_T \approx 2%$ @ 50GeV to 10% @ 1TeV (Inner Tracker + muon system)</td>
<td>$\sigma/p_T \approx 1%$ @ 50GeV to 10% @ 1TeV (Inner Tracker + muon system)</td>
</tr>
<tr>
<td>Trigger</td>
<td>L1 + HLT (L2+EF)</td>
<td>L1 + HLT (L2 + L3)</td>
</tr>
</tbody>
</table>
Incident on 19th Sep. 2008, repair, comeback.....

- A resistive zone developed in an electrical bus bar connection
- Electrical arc → punctured the helium enclosure
- Helium release under high pressure
- Relief discs unable to maintain the pressure rise below 0.15 MPa → large pressure forces

- Lot of repair work during 2009
 (14 quadrupole and 39 dipole magnets replaced, electrical interconnections repaired, larger helium pressure release ports installed,.....)

- A very successful re-start in Nov. 2009
LHC re-start in Nov. 2009

Protons, $E_{\text{beam}} = 0.45$ TeV

Protons, $E_{\text{beam}} = 0.45$ TeV
The first signals in the ATLAS experiment, 20. Nov 2009
Scientists at Cern in Geneva have restarted the Large Hadron Collider (LHC) experiment, which hopes to shed light on the origins of the universe.
First results on detector performance after only a few days / weeks

First publications of physics results in Feb/March 2010
Inner Detector performance: hits, tracks, resonances,...

- Very good agreement for the average number of hits on tracks in the silicon pixel and strip detectors

- Material distribution in the inner detector is well described in Monte Carlo
Resonances: CMS tracking detector

$K^0 \rightarrow \pi^+\pi^-$

$\Lambda \rightarrow p\pi^-$

$\Xi^\pm \rightarrow \Lambda \pi^\pm \rightarrow p\pi^-\pi^\pm$

$\phi \rightarrow KK$ candidates

$\phi \rightarrow K^+K^-$
First Physics
Variables used in the analysis of pp collisions

Transverse momentum
(in the plane perpendicular to the beam)

$$p_T = p \sin \theta$$

(Pseudo)-rapidity:
$$\eta = - \ln \tan \frac{\varphi}{2}$$

$$\left[\frac{d\sigma}{dp_T \, d\eta} \right] \text{ is Lorentz-invariant}$$

$$\begin{align*}
\theta &= 90^\circ \quad \Rightarrow \quad \eta = 0 \\
\theta &= 10^\circ \quad \Rightarrow \quad \eta \approx 2.4 \\
\theta &= 170^\circ \quad \Rightarrow \quad \eta \approx -2.4 \\
\theta &= 1^\circ \quad \Rightarrow \quad \eta \approx 5.0
\end{align*}$$
Inelastic low-p_T pp collisions

Most interactions are due to interactions at large distance between incoming protons
→ small momentum transfer, particles in the final state have large longitudinal, but small transverse momentum

$< p_T > \approx 500 \text{ MeV}$ (of charged particles in the final state)

$\frac{dN}{d\eta} \approx 7$
- about 7 charged particles per unit of pseudorapidity in the central region of the detector
- uniformly distributed in ϕ

These events are usually referred to as “minimum bias events”
Some features of soft inelastic pp collisions

- Features of soft inelastic collisions cannot be calculated in perturbative QCD
- Experimental measurements / input needed
- Models / parametrizations are used to extrapolate from previous colliders (energies) to the LHC energy regime → large uncertainties
- Needed to model other interesting physics (superposition of events,...)

\[\langle p_T \rangle (\eta = 0): 550 - 640 \text{ MeV} \ (15\%) \]

\[dN_{ch}/d\eta (\eta = 0): 5 - 7 \ (\sim 33\%) \]
Charged particle density versus η and p_T

N_{ch}: number of primary charged particles corrected to particle level, normalized to the number of selected events N_{ev}

Various Monte Carlo models fail to describe the ATLAS data

$\sqrt{s} = 900$ GeV

900 GeV data
March 2010

η: pseudorapidity

$p_T > 500$ MeV
$|\eta| < 2.5$

$N_{ch} \geq 1$
Since 30. March 2010: collisions at 7 TeV
(.... first interesting results appeared soon)

- High energy jets
 (scattered quarks, gluons)
- Energy: ~0.5 TeV
Collected data in 2010:

~40 pb\(^{-1}\) recorded
~36 pb\(^{-1}\) used in analysis
(good quality)

Both experiments have a very high data taking efficiency!

Well known resonances appeared “online”
Data taking in 2011

Original goal to collect 1 fb\(^{-1}\) already surpassed in June 2011

- World record on instantaneous luminosity on 22. April 2011: \(4.67 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1}\)
 (Tevatron record: \(4.02 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1}\))

- 1 fb\(^{-1}\) line passed in June 2011

- Collect per day as much luminosity as in 2010

- Data taking efficiency is high

- Pile-up is high
 (high intensity bunches)