

Direct search for cosmological Dark Matter

KIT Centrum Elementarteilchen- und Astroteilchen-Physik (KCETA), Institut für Kernphysik

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Content of the lecture

- DM evidences from astrophysics
- our cosmological model and DM
- DM candidates, the case for a WIMP
- DM in our galaxy
- kinematics and structure of direct detection of DM
- methods to detect DM directly
- > ... using Germanium crystals
 - as PPC detectors (CoGeNT)
 - > as cryogenic bolometers (EDELWEISS)
- ... using liquid noble gas (XENON)
- results & conclusions

Astronomical evidences for DM

collision of "bullet cluster": galaxies, gravitational wells

v (km/s)

100

3

galaxy cluster as gravitational lenses

anisotropies in the cosmic microwave bg rad. (CMBR)

1 parsec = 3.26 ly

Dark Matter – particle candidates

<u>WIMP neutralino χ:</u>

lightest (neutral) SUSY particle $\sigma \sim 1...10^{-2} \sigma_{electroweak}$

axion:

light WIMP produced non-thermally (to solve CP violation via Peccei-Quinn)

<u>axino:</u>

SUSY partner of axion, produced via decays of sparticles

neutrino:

known neutral, non-baryonic massive particle, weakly-interacting

... many more...

-CDM

HDM

Dark Matter – particle candidates

<u>WIMP neutralino χ :</u>

lightest (neutral) SUSY particle $\sigma \sim 1...10^{-2} \sigma_{electroweak}$

axion:

light WIMP produced non-thermally (to solve CP violation via Peccei-Quinn)

axino:

SUSY partner of axion, produced via decays of sparticles

neutrino:

known neutral, non-baryonic massive particle, weakly-interacting

... many more...

HDM

CDM

DM distribution in galaxies:

rotation velocity v_{rot} of a star of mass m around a central inner mass M_r :

 $v_{rot} \sim const. \rightarrow \rho(r) \sim r^{-2}$ outside bulge

DM in our galaxy: the Milky Way halo

Kepler's law:

rotation velocity v_{rot} of a star of mass m around a central inner mass M_r :

$$F = \frac{GM_{r}m}{r^{2}} = m \cdot a$$
$$a = \frac{V_{rot}^{2}}{r} = \frac{GM_{r}}{r^{2}}$$
$$\Rightarrow V_{rot}(r) = \sqrt{\frac{GM_{r}}{r}}$$
$$M_{r} = \int \rho(r)dV$$

(galactic bulge: $\rho(r)=\rho_0=const. r<5kpc$ outside: $\rho(r)\sim 0 \rightarrow M_r=const. \rightarrow v_{rot}\sim r^{-1/2}$)

 $v_{rot} \sim const. \rightarrow \rho(r) \sim r^{-2}$ outside bulge

Dark Matter halo model

N-body simulations: evolution of a DM halo

B. Moore et al. ETH Zürich

z=11.9

800 x 600 physical kpc

Diemand, Kuhlen, Madau 2006

Klaus Eitel

Production of SUSY particles at LHC

"indirect" DM search ($\chi\chi$ annihilation)

 $\chi\chi \rightarrow f\bar{f}$ needs astrophysical overdensities:

- 1. galactic center \rightarrow excess of cosmic rays (γ 's & antimatter)
- 2. the sun \rightarrow energetic "solar" neutrinos ($\bar{v}_{e}, v_{\mu}, \bar{v}_{\mu}$)
- 3. the earth \rightarrow "upward-going" muons from (v_{μ}, \bar{v}_{μ})

direct (WIMP) DM search

nuclear recoils:

- mass ~ 10 GeV to ~ 1000 GeV

- relative speed o(300 km/s)

(~ our orbital velocity around galactic center)

 $E_{recoil} = E_{WIMP} \frac{4M_{nucleus}M_{WIMP}}{(M_{nucleus} + M_{WIMP})^2} \cos^2 \theta_{recoil}$

 \Rightarrow only a few keV of recoil energy

- cross section
- local WIMP-density ρ

 $\sigma_{\chi} < 10^{-42} cm^2$ $\rho_{\chi} = 0.3 \ GeV/cm^3$

⇒ very very rare scattering events (< 1 / year / kg)</p>

elastic scattering on a nucleus

direct (WIMP) DM search

direct DM search - locations

direct DM search – detection schemes WIMP ...via elastic scattering off nuclei

direct DM search with ultralow noise ionization detectors – CoGeNT

p-type point contact (PPC) Germanium detector (HPGe)

direct DM search with ultralow noise ionization detectors – CoGeNT

direct DM search – CoGeNT(2010) \rightarrow light WIMP signal?

direct DM search – CoGeNT(2011) → light WIMP signal + annual modulation?

EDELWEISS – using cryo-crystals

measuring principle: χ scattering with energy deposit E_R leads to ΔT which can be read out via thermometer \rightarrow detector with small V_V needed Thermometer heat Electrodes (charge collection) Thermometer ionization parameters for Ge bolometer: E = 3V/cm $T_{op} = 20 \text{mK}$ m = 300g (d=20mm; r=35mm) $VC_V \sim 1 n J/K @ T_{op}$ G ~ 5nW/K thermal link to heat bath

EDELWEISS – discrimination power

EDELWEISS-2 – detector technology

27

Edelweiss @ Laboratoire Souterrain de Modane

Edelweiss experimental setup

WIMP search with ID detectors : «run 12»

Τ1

Data collected from April 1st 2009 to May 20th 2010

- 418 d total
- 355 d data (85% of 418)
- 325 d WIMP search (78% of 418)
- All detectors working
- 90% electronics channels ok
- 9/10 bolometers for physics
- 10.1 d gamma calib
- 6.4 d neutron calib

Data collected from April 1st 2009 to May 20th 2010

EDELWEISS WIMP search : final result (2008+2009+2010)

(almost) same technique used by the CDMS experiment (Soudan mine) → combination of Ge ionisation&heat experiments: Phys. Rev. D 84, 011102(R) (2011)

discrimination power – using liquid Xe

direct DM search - Xenon100 @ LNGS

installed in 2008 commissioning&calibration 2009 data taking since 2010

- 161 kg LXe TPC (mass: 10 × Xe10)
- 62 kg in target vol.
- 242 PMTs
- active LXe veto (≥4 cm)
- improved Xe10 shield (Pb, Poly, Cu, H₂O, N₂ purge)

XENON100 results

arXiv:1104.2549v1 100.9 live days 3 remaining events 1.8 ± 0.6 bg expected 1471 kg.d exposure

no indication for a WIMP signal

WIMP search region:

8.4 – 44.6 keVnr (4 - 30 PE) lower bound from the S2; median of the software threshold S2 > 300PE (4 - 13 PE).

