Cosmology : Basics

Dominique Aubert Université de Strasbourg

A dynamical Universe

Universe Expansion

the reddening of light or «redshift» is related to the motion of emitters

Cosmological Principle

The <u>standard</u> cosmological model assumes :

the Universe is isotropic and homogeneous (on cosmological scales)
Gravitation is described by General Relativity (GR)

Extension of the Copernician principle. It leads to:

Energetic content of the Universe, today

Expansion

History of the Universe

Nasa /WMAP team

Dynamical Distances in the Universe

$$r(t) = a(t)r_0$$

a is the expansion factor $a(t_0) = 1$ r(t) is the physical distance r_0 is the comoving distance distance

$$r(a') = 2r(a)$$

Expansion

Kinematics in the Universe

$$\frac{dr}{dt} = v(t) = \dot{a}(t)r_0 = \frac{\dot{a}}{a}r(t)$$

$$v(t) = H(t)r(t)$$
 The Hubble Law

$$H(t) = \frac{\dot{a}}{a}$$

The Hubble parameter is constant in space but not in time

The Hubble Parameter H0

The History of H0

Huchra; https://www.cfa.harvard.edu/~dfabricant/huchra/hubble/

The Hubble Law

v(t) = H(t)r(t) Linear with distance

Homogeneity requires a linear Hubble relation

Velocities & Distances in non-Euclidian space time

The structure of space-time is dynamic and potentially curved velocities and distances are ill-defined !!!

Velocities & Distances in non-Euclidian space time

Distances can be modified with *zero velocities*

$$v(t) = H(t)r(t)$$

This «variation rate of distance» can be greater than c but it's ok since it is NOT a velocity

Redshift

The redshift measures the expansion factor @ emission time It can be interpreted as a recession velocity @ small values z=0 today (a=1) z decreases with time

Quasars

		λ (Å)			
9500	9000	8500	8000	7500	7000
	Mun .		1.4	z=6.42	J1148+5251
	m	**************************************	- mpor	z=6.28	J1030+0524
	Mm		****	z=6.22	J1623+3112
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	r			z=6.20	J1048+4637
		Ar.	****	z=6.13	J1250+3130
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	m		z=6.07	J1602+4228
work	when	- A		z=6.05	J1630+4012
		M		z=6.01	J1137+3549
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	manner	w		z=6.00	J0818+1722
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	m		z=5.99	J1306+0356
- And the second	and the bage to a second	Juniopen		z=5.95	J1335+3533
·····		m	* + **	z=5.93	J1411+1217
mandered	Widwindow	momente	men	z=5.85	J0840+5624
	••••••••••••••••••••••••••••••••••••••	A		z=5.85	J0005-0006
malin	mar Mymmm	Manut		z=5.83	J1436+5007
		m	men	z=5.82	J0836+0054
		min		z=5.80	J0002+2550
mulghum	staft.	1 martinen	anna	z=5.79	J0927+2001
mound	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	MM mm	man	z=5.74	J1044-0125
9500	9000	8500	8000	7500	7000

SDSS

z=6 : ~10% of the Age of the Universe Fan et al. 2006

4

Velocities & Distances in evolving space time

Light travel distance ≠current distance

An Example of misunderstanding

Futura-Scien	es drone, avion électrique, tour	
🚀 SCIENCES	E TECHNO DA MAISON DE ENVIRONNEMENT DE SANTE	
Lettres d'information	abonnez-vous >>	
	Le 30 juin 2011 à 17h27 - e votez + e	
Sciences Accuell Actualités Tout High-Tech	Nouveau record de distance pour un quasar : 12,9 G années-lumière Par Laurent Sacco, Futura-Sciences	ord for Ilions
-Matière	Image: Second system Image: Second system </td <td></td>	
-Univers -Vie -Autres -Agenda -Biographies -Carte blanche -Citations	Les astronomes n'ont de cesse de traquer les objets les plus lointains de l'univers, car ce sont aussi les plus anciens et donc susceptibles de nous en apprendre un peu plus sur l'origine des structures dans l'univers observable. Ils viennent d'annoncer un record de distance pour un <u>quasar</u> : 12,9 milliards d'années-lumière.	

Light Travel Distance : 12.9 Billions light years Current physical distance : 28 Billions light years

The Cosmological Fluids

Friedman Equation

Note : at first sight, the expansion should decelerate

Energy : single particle case

$E^2 = p^2 c^2 + m^2 c^4$ Energy=motion + mass

$$E^{2}=_{p^{2}c^{2}}+m^{2}c^{4}$$

 $E\sim mc^{2}$

«non relativistic» ignore expansion

Matter

Mass is constant in an expanding volume
The physical density of matter decreases

Radiation

The individual energy of photons decreases
The physical density of photons also decreases
Overall, the energy density of photons decrease faster than for matter

Vacuum

time Λ ₩ ₩ ₩ ٨ Λ Λ Λ Λ Λ Λ Λ Λ Λ ٨ ΛΙ Λ **∍∧ ∳** ∧ ∳ ∧ ∳ A Λ

The vacuum energy density remains constant
Overall the vacuum energy increases with expansion

Λ

Λ

Λ

Λ

Λ

Λ

Domination eras

Domination eras

The expansion of the Universe is driven by:

- radiation at earliest stages
- matter during the buildup of large scale structures
 vacuum for 5 Gyrs

For Vacuum, energy increases with volume:

 $\mathrm{d}U = -P\mathrm{d}V \to P_v < 0.$

 $\frac{\ddot{a}}{a} = -\frac{4\pi G}{3c^2}(\rho c^2 + 3P)$

Vacuum accelerates the expansion !

From energy to expansion

Energy Conservation

Btw: energy is <u>NOT</u> conserved in the Universe

Since the space-time structure evolves, time translation invariance is not guaranteed, hence energy is not conserved

Dont Worry: physical concepts more general than energy are indeed conserved

Energy conservation : photons

Photons dominate the Thermodynamical state of the Universe

$$u\sim T^4$$
 for a blackbody $u\sim z^4$ because of expansion

 $L' \sim Z$ The Universe cools down

The Standard Model

Energetic content of the Universe, today

The Growth of structures

From CMB to LSS

Dynamics of matter

on cosmological scales, Gravity rule them all

Above a given threshold, clump of matter collapses

Multiscale density fluctuations

small scales fluctuations exhibit events with d >dc large scales should grow further to collapse

Hierarchical Model

Baryonic Oscillations

Baryons (aka «normal matter») is coupled to radiation before recombination

<u>Baryons oscillate</u>

Spatio-temporal resonance cavity

some scales are at maximal amplitude at recombination

The Baryon wiggles

Dark Matter

From CMB to LSS

BAOs in the galaxy distribution !

Percival et al. 2010

Figure 3. BAO recovered from the data for each of the redshift slices (solid circles with 1σ errors). These are compared with BAO in our default Λ CDM model (solid lines).

Galaxy formation

- Gaz radiates energy and cools down in the potential well of dark haloes
- Because of rotation, gaz spins to form discs
- stars may form and explodes later (SN feedback)

Numerical Simulations of Structure formation

Principle of numerical simulations

- •Gravity N-Body Solver (Tree/PM/AMR)
- Computational Fluid Dynamics (AMR/SPH)
- Radiative transfer (MC, Moment, Ray casting)
- •Chemistry Atomic Physics
- Massive Parallelisation for Supercomputers

The Universe in Supercomputers

Among the largest calculations ever performed

DM only

125 Mpc/h

Millenium 2160³ 512 processors 500 Mpc/h

DM only

Mare Nostrum Simulation (Horizon Project)

TRASH project

1024³ 128 GPUs + 1024³ CPUs

Large Scales success

Two - points correlation function

Large scales success

High Z Luminosity function

Small Scales Issues

Small Scales Issues : Cusp-Core

History of the Universe

Nasa /WMAP team