The Nuclear Many-Body Problem

The shell model: a schematic view

$$1s - 1s_{1/2} 2 2$$

Active space

Diagonalization of a big matrix in the active space

Starting point of the model: nucleons in a potential well. Problem of the model: active space grows very quickly.

Respect always symmetries of the 2-body hamiltonian: work in the laboratory frame of reference

Mean-field methods

 $---- 1s_{1/2} 2 2$

Construct all the orbitals from the mean 2-body interaction of 1 particle with the others All orbitals are active! Caution: not true single particle levels Break symmetries and work in a frame of reference intrinsic to the nucleus! The Shrödinger equation is equivalent to a wave function variational principle: minimize $\langle \Psi | H | \Psi \rangle$ under the constraint $\langle \Psi | \Psi \rangle = 1$:

$$\begin{split} &\delta\{<\Psi|H|\Psi>/<\Psi|\Psi>\}=0\\ &H=\sum_{i}(T_i+U_i)+\sum_{i>j}V(\vec{r}_i-\vec{r}_j)\\ &&\\ &\text{One-body} \\ \end{split}$$
 Two-body

Hartree-Fock method:

the ground state wave function is a Slater determinant.

The Hartree-Fock method

Wave-function of a many particle system= Slater determinant

$$\Psi = \frac{1}{N!} \sum_{P} (-)^{p} \phi_{\alpha}(\vec{r_{1}}) \phi_{\beta}(\vec{r_{2}}) ... \phi_{\nu}(\vec{r_{A}})$$

The particles interact trough a 2-body interaction $v(r_1-r_2)$

They are also confined by a central potential $v_{ext}(r)$. The total energy is:

 \sim

$$E = \sum_{i,\sigma} \int d\vec{r} \phi_i^*(\vec{r},\sigma) (-\frac{\hbar^2}{2m} \Delta + v_{ext}(\vec{r})) \phi_i(\vec{r},\sigma) + \frac{1}{2} \sum_{i,\sigma} \sum_{j,\sigma'} \int \int d\vec{r} d\vec{r'} \phi_i^*(\vec{r},\sigma) \phi_j^*(\vec{r'},\sigma') v(\vec{r},\vec{r'}) (\phi_i(\vec{r},\sigma)\phi_j(\vec{r'},\sigma') - \phi_i(\vec{r'},\sigma')\phi_j(\vec{r},\sigma)) direct exchange$$

Minimize the energy with a constraint on norm conservation:

$$(-\frac{\hbar^2}{2m}\Delta + v_{ext}(\vec{r}))\phi_i(\vec{r},\sigma) + \sum_{j,\sigma'}\int d\vec{r'}\phi_j^*(\vec{r'},\sigma')v(\vec{r},\vec{r'})$$
$$(-\phi_i(\vec{r},\sigma)\phi_j(\vec{r'},\sigma') - \phi_i(\vec{r'},\sigma')\phi_j(\vec{r},\sigma)) = \epsilon_i\phi_i(\vec{r},\sigma)$$

One defines the one-body diagonal and non diagonal densities:

$$\rho(\vec{r'}) = \sum_{j,\sigma'} |\phi_j(\vec{r'},\sigma')|^2$$
$$\rho^{(1)}(\vec{r},\sigma,\vec{r'},\sigma') = \sum_j \phi_j(\vec{r'},\sigma')\phi_j^*(\vec{r},\sigma)$$

One rewrites the HF equations as a function of these densities:

$$(-\frac{\hbar^2}{2m}\Delta + v_{ext}(\vec{r}))\phi_i(\vec{r},\sigma) + U(\vec{r})\phi_i(\vec{r},\sigma) - \sum_{\sigma}\int d\vec{r'}\rho^{(1)}(\vec{r},\sigma,\vec{r'},\sigma)v(\vec{r},\vec{r'})\phi_i(\vec{r'},\sigma) = \epsilon_i\phi_i(\vec{r},\sigma)$$

where
$$U(\vec{r}) = \int v(\vec{r} - \vec{r'})\rho(\vec{r'})d\vec{r'}$$

The first line is easy: problem in a potential. The second line is complicate: non local exchange term.

HF single particle energy:

$$\epsilon_{i} = t_{ii} + \sum_{j=1}^{A} (\bar{v}_{ijij})$$
2-body matrix element
between i and all other j
Total energy:

$$E^{HF} = \sum_{i=1}^{A} \epsilon_{i} - \frac{1}{2} \sum_{i,j=1}^{A} \bar{v}_{ij,ij}$$
no double counting!

Mean-field Methods

- Based on an "effective interaction" or a "density functional" The (small number of) parameters of the effective interaction are fixed by general considerations (no local adjustments)
- Pairing correlations are included at the BCS or better HFB level
- Full self-consistency
- No restrictions to a few shells, mean-field equations are solved as precisely as one wishes.
- Spherical and deformed nuclei are treated on the same footing, no "parametric deformation"

Excitation spectrum of N₂ molecule

Deformation of the nucleus introduced by a Lagrange multiplier:

$$H \Longrightarrow H - \lambda q$$

by varying λ , one obtains solutions for different deformations

Missing ingredient: pairing correlations (superconductivity)

They can be introduced using the BCS theory:

- single particle states are occupied with a probability v^2 between 1 and 0
- nucleons are grouped in pairs of opposite spin projections

The nuclear density becomes:

$$\rho(\vec{r}) = \sum_{i} v_i^2 |\varphi_i(\vec{r})|^2$$

HF equations with modified densities+ BCS equations to determine the occupationsTotal wave function with only the right mean particle number!

An example of an effective interaction: the Gogny force

It contains:

1-3

- A finite range central term:

$$0 \quad V_C = \sum_{i=1,2} (V_W^i + V_M^i P^r + V_B^i P^\sigma + V_H^i P^\sigma P^r) exp(-r^2/b_i^2)$$

- A zero range density dependent term

$$t_3(1+x_3P^{\tau})\rho(\overrightarrow{r})^{\alpha}$$

- Spin orbit and Coulomb

Parameters are adjusted on nuclear matter properties (saturation, ...) properties of a few magic nuclei

Mean-field energy curves (β_2 proportional to Q)

The main approaches

Three families:

• Gogny: finite range including a density dependence, same interaction for HF and pairing

(Bruyères le Chatel, Madrid, some Japanese groups)

- Skyrme: zero range, specific interaction for pairing, easy (France, Poland, Belgium, P. Rheinardt et al., Japanese groups,...)
- RMF: relativistic but no exchange, pairing non relativistic (Munich-Zagreb,)

ULB

Skyrme HFB

 Q_{α} for isotopic chains for super heavy elements (only even-even)

Skyrme HFB

BriX

- Alexandra

Deformation properties of super-heavies

Beyond ground state properties of even-even nuclei

Breaking of time reversal invariance

by a cranking constraint:

 $H' = H - \omega J_x$ rotational bands for deformed nuclei

by quasi particle excitations:

Odd nuclei : 1 qp states:

Even nuclei: 2qp states

$$eta_i^\dagger |0
angle$$

Still a mean-field method Full self-consistency for mean-field and pairing

Nuclear collective motion

Rotational Transitions ~ 0.2-2 MeV Vibrational Transitions ~ 0.5-12 MeV Nucleonic Transitions ~ 7 MeV

What is the origin of ordered motion of complex nuclei?

Complex systems often display astonishing simplicities. Nuclei are no exception. It is astonishing that a heavy nucleus, consisting of hundreds of rapidly moving protons and neutrons can exhibit collective motion, where all particles slowly dance in unison.

Moments of inertia

Fig. 3. Kinematical (circles) and dynamical (diamonds) moment of inertia for ²⁴⁰Pu (top) and ²⁴⁴Pu (bottom). Open (filled) markers denote calculated (experimental) values.

ULB

Spectra of odd Z nuclei

ULB

Nuclear DFT From Qualitative to Quantitative!

Deformed Mass Table in one day!

S. Cwiok, P.H. Heenen, W. Nazarewicz

Towards Nuclear Energy Density Functional (unified description of nuclei and nuclear matter)

- Self-consistent mean-field theory (HF, HFB, RMF)
- Nuclear density functional theory
- Symmetry breaking crucial
- Symmetry restoration essential (projection techniques, GCM, QRPA)
- Pairing channel extremely important but poorly know

Challenges:

better understanding of isovector and density dependence

of p-h and p-p interaction

- •how to extrapolate in isospin and mass?
- time-odd fields
- spin and isospin pieces

improved treatment of many-body correlations

microscopic treatment

•nuclear matter equation of state at low and high temperatures

·low density limit and clustering

isovector dependence of the symmetry energy

