The Nuclear Many-Body Problem
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Nuclear Landscape
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The shell model: a schematic view

Active space:

Inactive core “°Ca
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Active space
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Diagonalization of a big matrix in the active space

Starting point of the model: nucleons in a potential well.
Problem of the model: active space grows very quickly.

Respect always symmetries of the 2-body hamiltonian:
work in the laboratory frame of reference
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Mean-field methods

Construct all the orbitals from the mean
2-body interaction of 1 particle with the others
All orbitals are active!

Caution: not true single particle levels

Break symmetries and work in a frame of

reference intrinsic to the nucleus!



The Shrédinger equation is equivalent to a wave function variational
principle: minimize <¥ | H | ¥> under the constraint < ¥ | ¥> =1:
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One-body Two-body

Hartree-Fock method:

the ground state wave function is a Slater determinant.



The Hartree-Fock method

Wave-function of a many particle
system= Slater determinant
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The particles interact trough a 2-body interaction v(r,-r,)

They are also confined by a central potential v(r).
The total energy is:
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Minimize the energy with a constraint on norm conservation:
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One defines the one-body diagonal and non diagonal densities:
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One rewrites the HF equations as a function of these densities:
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where U((r) = /v('F’— ﬁ)p(r_;)dv:;

The first line is easy: problem in a potential.
The second line is complicate: non local exchange term.

HF single particle energy: € = Ty + Z{E;,;:;.;:J
i=1 2-body matrix element
between i and all other j

A A
Total energy: ETF =Y ¢ — 1 S o
i=1 2= T no double counting!



Mean-field Methods

 Based on an “effective interaction” or a “density functional”
The (small number of) parameters of the effective interaction
are fixed by general considerations (no local adjustments)

e Pairing correlations are included at the BCS or better HFB level

e Full self-consistency

 No restrictions to a few shells, mean-field equations are solved
as precisely as one wishes.

 Spherical and deformed nuclel are treated on the same footing,
no “parametric deformation”



Excitation spectrum of N, molecule

surfaces for excited electronic
configurations of N,
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Deformation of the nucleus introduced by a Lagrange multiplier:
H=H-A1q
by varying A, one obtains solutions for different deformations
Missing ingredient: pairing correlations (superconductivity)
They can be introduced using the BCS theory:
 single particle states are occupied with a probability v between 1 and 0
* nucleons are grouped in pairs of opposite spin projections
The nuclear density becomes: o(r) = Z:Vi2 |, (F) |
i
HF equations with modified densities

+ BCS equations to determine the occupations
Total wave function with only the right mean particle number!



An example of an effective interaction: the Gogny force

It contains:
- A finite range central term:

. Vo = Z Vit + Vi PT + VEPT + V4 PP exp(—r* /b7)

i=1.2
- A zero range density dependent term

13 ta(1+zaP")p(r)"

. - Spin orbit and Coulomb

Parameters are adjusted on nuclear matter properties ( saturation, ...)
properties of a few magic nuclei
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The main approaches

Three families:

e (Gogny: finite range including a density dependence, same
Interaction for HF and pairing

(Bruyeres le Chatel, Madrid, some Japanese groups)

¢ Skyrme: Zero range, specific interaction for pairing, easy

(France, Poland, Belgium, P. Rheinardt et al., Japanese
groups,...)

e RMF: relativistic but no exchange, pairing non relativistic

(Munich-Zagreb, ....)



Skyrme HFB

Q,, for isotopic chains
for super heavy elements
(only even-even)

Cwiok, Heenen, Nazarewicz
Nature 2005
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Skyrme HFB

Deformation properties
of super-heavies
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- Beyond ground state properties
of even-even nuclei

Breaking of time reversal invariance
by a cranking constraint:

H =H- ®J, rotational bands for deformed nuclei

by quasi particle excitations:
Odd nuclei : 1 gp states:

g!10)

Even nuclei: 2qp states

Still a mean-field method
Full self-consistency for mean-field and pairing



center of mass

Rotational Transitions ~ 0.2-2 MeV
Vibrational Transitions ~ 0.5-12 MeV
Nucleonic Transitions ~ 7 MeV

¥ =9
T

[

&

What is the origin of ordered \
motion of complex nuclei?
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Complex systems often display astonishing
simplicities. Nuclei are no exception. It is
astonishing that a heavy nucleus, consisting
of hundreds of rapidly moving protons and
neutrons can exhibit collective motion,
where all particles slowly dance in unison.
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Moments of inertia
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Spectra of odd Z nuclel
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Proton Number

Nuclear DFT

From Qualitative to Quantitative!

S. Cwiok, P.H. Heenen, W. Nazarewicz
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Towards Nuclear Energy Density Functional
(unified description of nuclei and nuclear matter)

Self-consistent mean-field theory (HF, HFB, RMF)

Nuclear density functional theory

Symmetry breaking crucial

Symmetry restoration essential (projection fechniques, GCM, QRPA)
Pairing channel extremely important but poorly know

Challenges:
‘better understanding of isovector and density dependence
of p-h and p-p interaction

*how to extrapolate in isospin and mass?
*time-odd fields
-spin and isospin pieces

-improved treatment of many-body correlations
*microscopic treatment

‘nuclear matter equation of state at low and high temperatures
‘low density limit and clustering
-isovector dependence of the symmetry energy




Ener'gy Scales in Nuclear Physics

QCD scale .
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